FFmpeg  4.3.9
vf_paletteuse.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2015 Stupeflix
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 /**
22  * @file
23  * Use a palette to downsample an input video stream.
24  */
25 
26 #include "libavutil/bprint.h"
27 #include "libavutil/internal.h"
28 #include "libavutil/opt.h"
29 #include "libavutil/qsort.h"
30 #include "avfilter.h"
31 #include "filters.h"
32 #include "framesync.h"
33 #include "internal.h"
34 
43 };
44 
50 };
51 
52 enum diff_mode {
56 };
57 
58 struct color_node {
61  int split;
63 };
64 
65 #define NBITS 5
66 #define CACHE_SIZE (1<<(3*NBITS))
67 
68 struct cached_color {
69  uint32_t color;
71 };
72 
73 struct cache_node {
76 };
77 
78 struct PaletteUseContext;
79 
81  int x_start, int y_start, int width, int height);
82 
83 typedef struct PaletteUseContext {
84  const AVClass *class;
86  struct cache_node cache[CACHE_SIZE]; /* lookup cache */
87  struct color_node map[AVPALETTE_COUNT]; /* 3D-Tree (KD-Tree with K=3) for reverse colormap */
88  uint32_t palette[AVPALETTE_COUNT];
89  int transparency_index; /* index in the palette of transparency. -1 if there is no transparency in the palette. */
92  int dither;
93  int new;
96  int ordered_dither[8*8];
97  int diff_mode;
100 
101  /* debug options */
105  uint64_t total_mean_err;
108 
109 #define OFFSET(x) offsetof(PaletteUseContext, x)
110 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
111 static const AVOption paletteuse_options[] = {
112  { "dither", "select dithering mode", OFFSET(dither), AV_OPT_TYPE_INT, {.i64=DITHERING_SIERRA2_4A}, 0, NB_DITHERING-1, FLAGS, "dithering_mode" },
113  { "bayer", "ordered 8x8 bayer dithering (deterministic)", 0, AV_OPT_TYPE_CONST, {.i64=DITHERING_BAYER}, INT_MIN, INT_MAX, FLAGS, "dithering_mode" },
114  { "heckbert", "dithering as defined by Paul Heckbert in 1982 (simple error diffusion)", 0, AV_OPT_TYPE_CONST, {.i64=DITHERING_HECKBERT}, INT_MIN, INT_MAX, FLAGS, "dithering_mode" },
115  { "floyd_steinberg", "Floyd and Steingberg dithering (error diffusion)", 0, AV_OPT_TYPE_CONST, {.i64=DITHERING_FLOYD_STEINBERG}, INT_MIN, INT_MAX, FLAGS, "dithering_mode" },
116  { "sierra2", "Frankie Sierra dithering v2 (error diffusion)", 0, AV_OPT_TYPE_CONST, {.i64=DITHERING_SIERRA2}, INT_MIN, INT_MAX, FLAGS, "dithering_mode" },
117  { "sierra2_4a", "Frankie Sierra dithering v2 \"Lite\" (error diffusion)", 0, AV_OPT_TYPE_CONST, {.i64=DITHERING_SIERRA2_4A}, INT_MIN, INT_MAX, FLAGS, "dithering_mode" },
118  { "bayer_scale", "set scale for bayer dithering", OFFSET(bayer_scale), AV_OPT_TYPE_INT, {.i64=2}, 0, 5, FLAGS },
119  { "diff_mode", "set frame difference mode", OFFSET(diff_mode), AV_OPT_TYPE_INT, {.i64=DIFF_MODE_NONE}, 0, NB_DIFF_MODE-1, FLAGS, "diff_mode" },
120  { "rectangle", "process smallest different rectangle", 0, AV_OPT_TYPE_CONST, {.i64=DIFF_MODE_RECTANGLE}, INT_MIN, INT_MAX, FLAGS, "diff_mode" },
121  { "new", "take new palette for each output frame", OFFSET(new), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS },
122  { "alpha_threshold", "set the alpha threshold for transparency", OFFSET(trans_thresh), AV_OPT_TYPE_INT, {.i64=128}, 0, 255, FLAGS },
123 
124  /* following are the debug options, not part of the official API */
125  { "debug_kdtree", "save Graphviz graph of the kdtree in specified file", OFFSET(dot_filename), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS },
126  { "color_search", "set reverse colormap color search method", OFFSET(color_search_method), AV_OPT_TYPE_INT, {.i64=COLOR_SEARCH_NNS_ITERATIVE}, 0, NB_COLOR_SEARCHES-1, FLAGS, "search" },
127  { "nns_iterative", "iterative search", 0, AV_OPT_TYPE_CONST, {.i64=COLOR_SEARCH_NNS_ITERATIVE}, INT_MIN, INT_MAX, FLAGS, "search" },
128  { "nns_recursive", "recursive search", 0, AV_OPT_TYPE_CONST, {.i64=COLOR_SEARCH_NNS_RECURSIVE}, INT_MIN, INT_MAX, FLAGS, "search" },
129  { "bruteforce", "brute-force into the palette", 0, AV_OPT_TYPE_CONST, {.i64=COLOR_SEARCH_BRUTEFORCE}, INT_MIN, INT_MAX, FLAGS, "search" },
130  { "mean_err", "compute and print mean error", OFFSET(calc_mean_err), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS },
131  { "debug_accuracy", "test color search accuracy", OFFSET(debug_accuracy), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS },
132  { NULL }
133 };
134 
135 AVFILTER_DEFINE_CLASS(paletteuse);
136 
137 static int load_apply_palette(FFFrameSync *fs);
138 
140 {
141  static const enum AVPixelFormat in_fmts[] = {AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE};
142  static const enum AVPixelFormat inpal_fmts[] = {AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE};
143  static const enum AVPixelFormat out_fmts[] = {AV_PIX_FMT_PAL8, AV_PIX_FMT_NONE};
144  int ret;
145  if ((ret = ff_formats_ref(ff_make_format_list(in_fmts),
146  &ctx->inputs[0]->out_formats)) < 0 ||
147  (ret = ff_formats_ref(ff_make_format_list(inpal_fmts),
148  &ctx->inputs[1]->out_formats)) < 0 ||
149  (ret = ff_formats_ref(ff_make_format_list(out_fmts),
150  &ctx->outputs[0]->in_formats)) < 0)
151  return ret;
152  return 0;
153 }
154 
155 static av_always_inline int dither_color(uint32_t px, int er, int eg, int eb, int scale, int shift)
156 {
157  return av_clip_uint8( px >> 24 ) << 24
158  | av_clip_uint8((px >> 16 & 0xff) + ((er * scale) / (1<<shift))) << 16
159  | av_clip_uint8((px >> 8 & 0xff) + ((eg * scale) / (1<<shift))) << 8
160  | av_clip_uint8((px & 0xff) + ((eb * scale) / (1<<shift)));
161 }
162 
163 static av_always_inline int diff(const uint8_t *c1, const uint8_t *c2, const int trans_thresh)
164 {
165  // XXX: try L*a*b with CIE76 (dL*dL + da*da + db*db)
166  const int dr = c1[1] - c2[1];
167  const int dg = c1[2] - c2[2];
168  const int db = c1[3] - c2[3];
169 
170  if (c1[0] < trans_thresh && c2[0] < trans_thresh) {
171  return 0;
172  } else if (c1[0] >= trans_thresh && c2[0] >= trans_thresh) {
173  return dr*dr + dg*dg + db*db;
174  } else {
175  return 255*255 + 255*255 + 255*255;
176  }
177 }
178 
179 static av_always_inline uint8_t colormap_nearest_bruteforce(const uint32_t *palette, const uint8_t *argb, const int trans_thresh)
180 {
181  int i, pal_id = -1, min_dist = INT_MAX;
182 
183  for (i = 0; i < AVPALETTE_COUNT; i++) {
184  const uint32_t c = palette[i];
185 
186  if (c >> 24 >= trans_thresh) { // ignore transparent entry
187  const uint8_t palargb[] = {
188  palette[i]>>24 & 0xff,
189  palette[i]>>16 & 0xff,
190  palette[i]>> 8 & 0xff,
191  palette[i] & 0xff,
192  };
193  const int d = diff(palargb, argb, trans_thresh);
194  if (d < min_dist) {
195  pal_id = i;
196  min_dist = d;
197  }
198  }
199  }
200  return pal_id;
201 }
202 
203 /* Recursive form, simpler but a bit slower. Kept for reference. */
205  int node_pos;
206  int dist_sqd;
207 };
208 
209 static void colormap_nearest_node(const struct color_node *map,
210  const int node_pos,
211  const uint8_t *target,
212  const int trans_thresh,
213  struct nearest_color *nearest)
214 {
215  const struct color_node *kd = map + node_pos;
216  const int s = kd->split;
217  int dx, nearer_kd_id, further_kd_id;
218  const uint8_t *current = kd->val;
219  const int current_to_target = diff(target, current, trans_thresh);
220 
221  if (current_to_target < nearest->dist_sqd) {
222  nearest->node_pos = node_pos;
223  nearest->dist_sqd = current_to_target;
224  }
225 
226  if (kd->left_id != -1 || kd->right_id != -1) {
227  dx = target[s] - current[s];
228 
229  if (dx <= 0) nearer_kd_id = kd->left_id, further_kd_id = kd->right_id;
230  else nearer_kd_id = kd->right_id, further_kd_id = kd->left_id;
231 
232  if (nearer_kd_id != -1)
233  colormap_nearest_node(map, nearer_kd_id, target, trans_thresh, nearest);
234 
235  if (further_kd_id != -1 && dx*dx < nearest->dist_sqd)
236  colormap_nearest_node(map, further_kd_id, target, trans_thresh, nearest);
237  }
238 }
239 
240 static av_always_inline uint8_t colormap_nearest_recursive(const struct color_node *node, const uint8_t *rgb, const int trans_thresh)
241 {
242  struct nearest_color res = {.dist_sqd = INT_MAX, .node_pos = -1};
243  colormap_nearest_node(node, 0, rgb, trans_thresh, &res);
244  return node[res.node_pos].palette_id;
245 }
246 
247 struct stack_node {
248  int color_id;
249  int dx2;
250 };
251 
252 static av_always_inline uint8_t colormap_nearest_iterative(const struct color_node *root, const uint8_t *target, const int trans_thresh)
253 {
254  int pos = 0, best_node_id = -1, best_dist = INT_MAX, cur_color_id = 0;
255  struct stack_node nodes[16];
256  struct stack_node *node = &nodes[0];
257 
258  for (;;) {
259 
260  const struct color_node *kd = &root[cur_color_id];
261  const uint8_t *current = kd->val;
262  const int current_to_target = diff(target, current, trans_thresh);
263 
264  /* Compare current color node to the target and update our best node if
265  * it's actually better. */
266  if (current_to_target < best_dist) {
267  best_node_id = cur_color_id;
268  if (!current_to_target)
269  goto end; // exact match, we can return immediately
270  best_dist = current_to_target;
271  }
272 
273  /* Check if it's not a leaf */
274  if (kd->left_id != -1 || kd->right_id != -1) {
275  const int split = kd->split;
276  const int dx = target[split] - current[split];
277  int nearer_kd_id, further_kd_id;
278 
279  /* Define which side is the most interesting. */
280  if (dx <= 0) nearer_kd_id = kd->left_id, further_kd_id = kd->right_id;
281  else nearer_kd_id = kd->right_id, further_kd_id = kd->left_id;
282 
283  if (nearer_kd_id != -1) {
284  if (further_kd_id != -1) {
285  /* Here, both paths are defined, so we push a state for
286  * when we are going back. */
287  node->color_id = further_kd_id;
288  node->dx2 = dx*dx;
289  pos++;
290  node++;
291  }
292  /* We can now update current color with the most probable path
293  * (no need to create a state since there is nothing to save
294  * anymore). */
295  cur_color_id = nearer_kd_id;
296  continue;
297  } else if (dx*dx < best_dist) {
298  /* The nearest path isn't available, so there is only one path
299  * possible and it's the least probable. We enter it only if the
300  * distance from the current point to the hyper rectangle is
301  * less than our best distance. */
302  cur_color_id = further_kd_id;
303  continue;
304  }
305  }
306 
307  /* Unstack as much as we can, typically as long as the least probable
308  * branch aren't actually probable. */
309  do {
310  if (--pos < 0)
311  goto end;
312  node--;
313  } while (node->dx2 >= best_dist);
314 
315  /* We got a node where the least probable branch might actually contain
316  * a relevant color. */
317  cur_color_id = node->color_id;
318  }
319 
320 end:
321  return root[best_node_id].palette_id;
322 }
323 
324 #define COLORMAP_NEAREST(search, palette, root, target, trans_thresh) \
325  search == COLOR_SEARCH_NNS_ITERATIVE ? colormap_nearest_iterative(root, target, trans_thresh) : \
326  search == COLOR_SEARCH_NNS_RECURSIVE ? colormap_nearest_recursive(root, target, trans_thresh) : \
327  colormap_nearest_bruteforce(palette, target, trans_thresh)
328 
329 /**
330  * Check if the requested color is in the cache already. If not, find it in the
331  * color tree and cache it.
332  * Note: a, r, g, and b are the components of color, but are passed as well to avoid
333  * recomputing them (they are generally computed by the caller for other uses).
334  */
337  const enum color_search_method search_method)
338 {
339  int i;
340  const uint8_t argb_elts[] = {a, r, g, b};
341  const uint8_t rhash = r & ((1<<NBITS)-1);
342  const uint8_t ghash = g & ((1<<NBITS)-1);
343  const uint8_t bhash = b & ((1<<NBITS)-1);
344  const unsigned hash = rhash<<(NBITS*2) | ghash<<NBITS | bhash;
345  struct cache_node *node = &s->cache[hash];
346  struct cached_color *e;
347 
348  // first, check for transparency
349  if (a < s->trans_thresh && s->transparency_index >= 0) {
350  return s->transparency_index;
351  }
352 
353  for (i = 0; i < node->nb_entries; i++) {
354  e = &node->entries[i];
355  if (e->color == color)
356  return e->pal_entry;
357  }
358 
359  e = av_dynarray2_add((void**)&node->entries, &node->nb_entries,
360  sizeof(*node->entries), NULL);
361  if (!e)
362  return AVERROR(ENOMEM);
363  e->color = color;
364  e->pal_entry = COLORMAP_NEAREST(search_method, s->palette, s->map, argb_elts, s->trans_thresh);
365 
366  return e->pal_entry;
367 }
368 
370  uint32_t c, int *er, int *eg, int *eb,
371  const enum color_search_method search_method)
372 {
373  const uint8_t a = c >> 24 & 0xff;
374  const uint8_t r = c >> 16 & 0xff;
375  const uint8_t g = c >> 8 & 0xff;
376  const uint8_t b = c & 0xff;
377  uint32_t dstc;
378  const int dstx = color_get(s, c, a, r, g, b, search_method);
379  if (dstx < 0)
380  return dstx;
381  dstc = s->palette[dstx];
382  *er = r - (dstc >> 16 & 0xff);
383  *eg = g - (dstc >> 8 & 0xff);
384  *eb = b - (dstc & 0xff);
385  return dstx;
386 }
387 
389  int x_start, int y_start, int w, int h,
390  enum dithering_mode dither,
391  const enum color_search_method search_method)
392 {
393  int x, y;
394  const int src_linesize = in ->linesize[0] >> 2;
395  const int dst_linesize = out->linesize[0];
396  uint32_t *src = ((uint32_t *)in ->data[0]) + y_start*src_linesize;
397  uint8_t *dst = out->data[0] + y_start*dst_linesize;
398 
399  w += x_start;
400  h += y_start;
401 
402  for (y = y_start; y < h; y++) {
403  for (x = x_start; x < w; x++) {
404  int er, eg, eb;
405 
406  if (dither == DITHERING_BAYER) {
407  const int d = s->ordered_dither[(y & 7)<<3 | (x & 7)];
408  const uint8_t a8 = src[x] >> 24 & 0xff;
409  const uint8_t r8 = src[x] >> 16 & 0xff;
410  const uint8_t g8 = src[x] >> 8 & 0xff;
411  const uint8_t b8 = src[x] & 0xff;
412  const uint8_t r = av_clip_uint8(r8 + d);
413  const uint8_t g = av_clip_uint8(g8 + d);
414  const uint8_t b = av_clip_uint8(b8 + d);
415  const int color = color_get(s, src[x], a8, r, g, b, search_method);
416 
417  if (color < 0)
418  return color;
419  dst[x] = color;
420 
421  } else if (dither == DITHERING_HECKBERT) {
422  const int right = x < w - 1, down = y < h - 1;
423  const int color = get_dst_color_err(s, src[x], &er, &eg, &eb, search_method);
424 
425  if (color < 0)
426  return color;
427  dst[x] = color;
428 
429  if (right) src[ x + 1] = dither_color(src[ x + 1], er, eg, eb, 3, 3);
430  if ( down) src[src_linesize + x ] = dither_color(src[src_linesize + x ], er, eg, eb, 3, 3);
431  if (right && down) src[src_linesize + x + 1] = dither_color(src[src_linesize + x + 1], er, eg, eb, 2, 3);
432 
433  } else if (dither == DITHERING_FLOYD_STEINBERG) {
434  const int right = x < w - 1, down = y < h - 1, left = x > x_start;
435  const int color = get_dst_color_err(s, src[x], &er, &eg, &eb, search_method);
436 
437  if (color < 0)
438  return color;
439  dst[x] = color;
440 
441  if (right) src[ x + 1] = dither_color(src[ x + 1], er, eg, eb, 7, 4);
442  if (left && down) src[src_linesize + x - 1] = dither_color(src[src_linesize + x - 1], er, eg, eb, 3, 4);
443  if ( down) src[src_linesize + x ] = dither_color(src[src_linesize + x ], er, eg, eb, 5, 4);
444  if (right && down) src[src_linesize + x + 1] = dither_color(src[src_linesize + x + 1], er, eg, eb, 1, 4);
445 
446  } else if (dither == DITHERING_SIERRA2) {
447  const int right = x < w - 1, down = y < h - 1, left = x > x_start;
448  const int right2 = x < w - 2, left2 = x > x_start + 1;
449  const int color = get_dst_color_err(s, src[x], &er, &eg, &eb, search_method);
450 
451  if (color < 0)
452  return color;
453  dst[x] = color;
454 
455  if (right) src[ x + 1] = dither_color(src[ x + 1], er, eg, eb, 4, 4);
456  if (right2) src[ x + 2] = dither_color(src[ x + 2], er, eg, eb, 3, 4);
457 
458  if (down) {
459  if (left2) src[ src_linesize + x - 2] = dither_color(src[ src_linesize + x - 2], er, eg, eb, 1, 4);
460  if (left) src[ src_linesize + x - 1] = dither_color(src[ src_linesize + x - 1], er, eg, eb, 2, 4);
461  if (1) src[ src_linesize + x ] = dither_color(src[ src_linesize + x ], er, eg, eb, 3, 4);
462  if (right) src[ src_linesize + x + 1] = dither_color(src[ src_linesize + x + 1], er, eg, eb, 2, 4);
463  if (right2) src[ src_linesize + x + 2] = dither_color(src[ src_linesize + x + 2], er, eg, eb, 1, 4);
464  }
465 
466  } else if (dither == DITHERING_SIERRA2_4A) {
467  const int right = x < w - 1, down = y < h - 1, left = x > x_start;
468  const int color = get_dst_color_err(s, src[x], &er, &eg, &eb, search_method);
469 
470  if (color < 0)
471  return color;
472  dst[x] = color;
473 
474  if (right) src[ x + 1] = dither_color(src[ x + 1], er, eg, eb, 2, 2);
475  if (left && down) src[src_linesize + x - 1] = dither_color(src[src_linesize + x - 1], er, eg, eb, 1, 2);
476  if ( down) src[src_linesize + x ] = dither_color(src[src_linesize + x ], er, eg, eb, 1, 2);
477 
478  } else {
479  const uint8_t a = src[x] >> 24 & 0xff;
480  const uint8_t r = src[x] >> 16 & 0xff;
481  const uint8_t g = src[x] >> 8 & 0xff;
482  const uint8_t b = src[x] & 0xff;
483  const int color = color_get(s, src[x], a, r, g, b, search_method);
484 
485  if (color < 0)
486  return color;
487  dst[x] = color;
488  }
489  }
490  src += src_linesize;
491  dst += dst_linesize;
492  }
493  return 0;
494 }
495 
496 #define INDENT 4
497 static void disp_node(AVBPrint *buf,
498  const struct color_node *map,
499  int parent_id, int node_id,
500  int depth)
501 {
502  const struct color_node *node = &map[node_id];
503  const uint32_t fontcolor = node->val[1] > 0x50 &&
504  node->val[2] > 0x50 &&
505  node->val[3] > 0x50 ? 0 : 0xffffff;
506  const int rgb_comp = node->split - 1;
507  av_bprintf(buf, "%*cnode%d ["
508  "label=\"%c%02X%c%02X%c%02X%c\" "
509  "fillcolor=\"#%02x%02x%02x\" "
510  "fontcolor=\"#%06"PRIX32"\"]\n",
511  depth*INDENT, ' ', node->palette_id,
512  "[ "[rgb_comp], node->val[1],
513  "][ "[rgb_comp], node->val[2],
514  " ]["[rgb_comp], node->val[3],
515  " ]"[rgb_comp],
516  node->val[1], node->val[2], node->val[3],
517  fontcolor);
518  if (parent_id != -1)
519  av_bprintf(buf, "%*cnode%d -> node%d\n", depth*INDENT, ' ',
520  map[parent_id].palette_id, node->palette_id);
521  if (node->left_id != -1) disp_node(buf, map, node_id, node->left_id, depth + 1);
522  if (node->right_id != -1) disp_node(buf, map, node_id, node->right_id, depth + 1);
523 }
524 
525 // debug_kdtree=kdtree.dot -> dot -Tpng kdtree.dot > kdtree.png
526 static int disp_tree(const struct color_node *node, const char *fname)
527 {
528  AVBPrint buf;
529  FILE *f = av_fopen_utf8(fname, "w");
530 
531  if (!f) {
532  int ret = AVERROR(errno);
533  av_log(NULL, AV_LOG_ERROR, "Cannot open file '%s' for writing: %s\n",
534  fname, av_err2str(ret));
535  return ret;
536  }
537 
539 
540  av_bprintf(&buf, "digraph {\n");
541  av_bprintf(&buf, " node [style=filled fontsize=10 shape=box]\n");
542  disp_node(&buf, node, -1, 0, 0);
543  av_bprintf(&buf, "}\n");
544 
545  fwrite(buf.str, 1, buf.len, f);
546  fclose(f);
547  av_bprint_finalize(&buf, NULL);
548  return 0;
549 }
550 
551 static int debug_accuracy(const struct color_node *node, const uint32_t *palette, const int trans_thresh,
552  const enum color_search_method search_method)
553 {
554  int r, g, b, ret = 0;
555 
556  for (r = 0; r < 256; r++) {
557  for (g = 0; g < 256; g++) {
558  for (b = 0; b < 256; b++) {
559  const uint8_t argb[] = {0xff, r, g, b};
560  const int r1 = COLORMAP_NEAREST(search_method, palette, node, argb, trans_thresh);
561  const int r2 = colormap_nearest_bruteforce(palette, argb, trans_thresh);
562  if (r1 != r2) {
563  const uint32_t c1 = palette[r1];
564  const uint32_t c2 = palette[r2];
565  const uint8_t palargb1[] = { 0xff, c1>>16 & 0xff, c1>> 8 & 0xff, c1 & 0xff };
566  const uint8_t palargb2[] = { 0xff, c2>>16 & 0xff, c2>> 8 & 0xff, c2 & 0xff };
567  const int d1 = diff(palargb1, argb, trans_thresh);
568  const int d2 = diff(palargb2, argb, trans_thresh);
569  if (d1 != d2) {
571  "/!\\ %02X%02X%02X: %d ! %d (%06"PRIX32" ! %06"PRIX32") / dist: %d ! %d\n",
572  r, g, b, r1, r2, c1 & 0xffffff, c2 & 0xffffff, d1, d2);
573  ret = 1;
574  }
575  }
576  }
577  }
578  }
579  return ret;
580 }
581 
582 struct color {
583  uint32_t value;
585 };
586 
587 struct color_rect {
590 };
591 
592 typedef int (*cmp_func)(const void *, const void *);
593 
594 #define DECLARE_CMP_FUNC(name, pos) \
595 static int cmp_##name(const void *pa, const void *pb) \
596 { \
597  const struct color *a = pa; \
598  const struct color *b = pb; \
599  return (a->value >> (8 * (3 - (pos))) & 0xff) \
600  - (b->value >> (8 * (3 - (pos))) & 0xff); \
601 }
602 
607 
608 static const cmp_func cmp_funcs[] = {cmp_a, cmp_r, cmp_g, cmp_b};
609 
610 static int get_next_color(const uint8_t *color_used, const uint32_t *palette,
611  const int trans_thresh,
612  int *component, const struct color_rect *box)
613 {
614  int wr, wg, wb;
615  int i, longest = 0;
616  unsigned nb_color = 0;
617  struct color_rect ranges;
618  struct color tmp_pal[256];
619  cmp_func cmpf;
620 
621  ranges.min[0] = ranges.min[1] = ranges.min[2] = 0xff;
622  ranges.max[0] = ranges.max[1] = ranges.max[2] = 0x00;
623 
624  for (i = 0; i < AVPALETTE_COUNT; i++) {
625  const uint32_t c = palette[i];
626  const uint8_t a = c >> 24 & 0xff;
627  const uint8_t r = c >> 16 & 0xff;
628  const uint8_t g = c >> 8 & 0xff;
629  const uint8_t b = c & 0xff;
630 
631  if (a < trans_thresh) {
632  continue;
633  }
634 
635  if (color_used[i] || (a != 0xff) ||
636  r < box->min[0] || g < box->min[1] || b < box->min[2] ||
637  r > box->max[0] || g > box->max[1] || b > box->max[2])
638  continue;
639 
640  if (r < ranges.min[0]) ranges.min[0] = r;
641  if (g < ranges.min[1]) ranges.min[1] = g;
642  if (b < ranges.min[2]) ranges.min[2] = b;
643 
644  if (r > ranges.max[0]) ranges.max[0] = r;
645  if (g > ranges.max[1]) ranges.max[1] = g;
646  if (b > ranges.max[2]) ranges.max[2] = b;
647 
648  tmp_pal[nb_color].value = c;
649  tmp_pal[nb_color].pal_id = i;
650 
651  nb_color++;
652  }
653 
654  if (!nb_color)
655  return -1;
656 
657  /* define longest axis that will be the split component */
658  wr = ranges.max[0] - ranges.min[0];
659  wg = ranges.max[1] - ranges.min[1];
660  wb = ranges.max[2] - ranges.min[2];
661  if (wr >= wg && wr >= wb) longest = 1;
662  if (wg >= wr && wg >= wb) longest = 2;
663  if (wb >= wr && wb >= wg) longest = 3;
664  cmpf = cmp_funcs[longest];
665  *component = longest;
666 
667  /* sort along this axis to get median */
668  AV_QSORT(tmp_pal, nb_color, struct color, cmpf);
669 
670  return tmp_pal[nb_color >> 1].pal_id;
671 }
672 
673 static int colormap_insert(struct color_node *map,
674  uint8_t *color_used,
675  int *nb_used,
676  const uint32_t *palette,
677  const int trans_thresh,
678  const struct color_rect *box)
679 {
680  uint32_t c;
681  int component, cur_id;
682  int node_left_id = -1, node_right_id = -1;
683  struct color_node *node;
684  struct color_rect box1, box2;
685  const int pal_id = get_next_color(color_used, palette, trans_thresh, &component, box);
686 
687  if (pal_id < 0)
688  return -1;
689 
690  /* create new node with that color */
691  cur_id = (*nb_used)++;
692  c = palette[pal_id];
693  node = &map[cur_id];
694  node->split = component;
695  node->palette_id = pal_id;
696  node->val[0] = c>>24 & 0xff;
697  node->val[1] = c>>16 & 0xff;
698  node->val[2] = c>> 8 & 0xff;
699  node->val[3] = c & 0xff;
700 
701  color_used[pal_id] = 1;
702 
703  /* get the two boxes this node creates */
704  box1 = box2 = *box;
705  box1.max[component-1] = node->val[component];
706  box2.min[component-1] = node->val[component] + 1;
707 
708  node_left_id = colormap_insert(map, color_used, nb_used, palette, trans_thresh, &box1);
709 
710  if (box2.min[component-1] <= box2.max[component-1])
711  node_right_id = colormap_insert(map, color_used, nb_used, palette, trans_thresh, &box2);
712 
713  node->left_id = node_left_id;
714  node->right_id = node_right_id;
715 
716  return cur_id;
717 }
718 
719 static int cmp_pal_entry(const void *a, const void *b)
720 {
721  const int c1 = *(const uint32_t *)a & 0xffffff;
722  const int c2 = *(const uint32_t *)b & 0xffffff;
723  return c1 - c2;
724 }
725 
727 {
728  int i, nb_used = 0;
729  uint8_t color_used[AVPALETTE_COUNT] = {0};
730  uint32_t last_color = 0;
731  struct color_rect box;
732 
733  /* disable transparent colors and dups */
734  qsort(s->palette, AVPALETTE_COUNT, sizeof(*s->palette), cmp_pal_entry);
735  // update transparency index:
736  if (s->transparency_index >= 0) {
737  for (i = 0; i < AVPALETTE_COUNT; i++) {
738  if ((s->palette[i]>>24 & 0xff) == 0) {
739  s->transparency_index = i; // we are assuming at most one transparent color in palette
740  break;
741  }
742  }
743  }
744 
745  for (i = 0; i < AVPALETTE_COUNT; i++) {
746  const uint32_t c = s->palette[i];
747  if (i != 0 && c == last_color) {
748  color_used[i] = 1;
749  continue;
750  }
751  last_color = c;
752  if (c >> 24 < s->trans_thresh) {
753  color_used[i] = 1; // ignore transparent color(s)
754  continue;
755  }
756  }
757 
758  box.min[0] = box.min[1] = box.min[2] = 0x00;
759  box.max[0] = box.max[1] = box.max[2] = 0xff;
760 
761  colormap_insert(s->map, color_used, &nb_used, s->palette, s->trans_thresh, &box);
762 
763  if (s->dot_filename)
764  disp_tree(s->map, s->dot_filename);
765 
766  if (s->debug_accuracy) {
768  av_log(NULL, AV_LOG_INFO, "Accuracy check passed\n");
769  }
770 }
771 
772 static void debug_mean_error(PaletteUseContext *s, const AVFrame *in1,
773  const AVFrame *in2, int frame_count)
774 {
775  int x, y;
776  const uint32_t *palette = s->palette;
777  uint32_t *src1 = (uint32_t *)in1->data[0];
778  uint8_t *src2 = in2->data[0];
779  const int src1_linesize = in1->linesize[0] >> 2;
780  const int src2_linesize = in2->linesize[0];
781  const float div = in1->width * in1->height * 3;
782  unsigned mean_err = 0;
783 
784  for (y = 0; y < in1->height; y++) {
785  for (x = 0; x < in1->width; x++) {
786  const uint32_t c1 = src1[x];
787  const uint32_t c2 = palette[src2[x]];
788  const uint8_t argb1[] = {0xff, c1 >> 16 & 0xff, c1 >> 8 & 0xff, c1 & 0xff};
789  const uint8_t argb2[] = {0xff, c2 >> 16 & 0xff, c2 >> 8 & 0xff, c2 & 0xff};
790  mean_err += diff(argb1, argb2, s->trans_thresh);
791  }
792  src1 += src1_linesize;
793  src2 += src2_linesize;
794  }
795 
796  s->total_mean_err += mean_err;
797 
798  av_log(NULL, AV_LOG_INFO, "MEP:%.3f TotalMEP:%.3f\n",
799  mean_err / div, s->total_mean_err / (div * frame_count));
800 }
801 
803  const AVFrame *prv_src, const AVFrame *cur_src,
804  const AVFrame *prv_dst, AVFrame *cur_dst,
805  int *xp, int *yp, int *wp, int *hp)
806 {
807  int x_start = 0, y_start = 0;
808  int width = cur_src->width;
809  int height = cur_src->height;
810 
811  if (prv_src->data[0] && diff_mode == DIFF_MODE_RECTANGLE) {
812  int y;
813  int x_end = cur_src->width - 1,
814  y_end = cur_src->height - 1;
815  const uint32_t *prv_srcp = (const uint32_t *)prv_src->data[0];
816  const uint32_t *cur_srcp = (const uint32_t *)cur_src->data[0];
817  const uint8_t *prv_dstp = prv_dst->data[0];
818  uint8_t *cur_dstp = cur_dst->data[0];
819 
820  const int prv_src_linesize = prv_src->linesize[0] >> 2;
821  const int cur_src_linesize = cur_src->linesize[0] >> 2;
822  const int prv_dst_linesize = prv_dst->linesize[0];
823  const int cur_dst_linesize = cur_dst->linesize[0];
824 
825  /* skip common lines */
826  while (y_start < y_end && !memcmp(prv_srcp + y_start*prv_src_linesize,
827  cur_srcp + y_start*cur_src_linesize,
828  cur_src->width * 4)) {
829  memcpy(cur_dstp + y_start*cur_dst_linesize,
830  prv_dstp + y_start*prv_dst_linesize,
831  cur_dst->width);
832  y_start++;
833  }
834  while (y_end > y_start && !memcmp(prv_srcp + y_end*prv_src_linesize,
835  cur_srcp + y_end*cur_src_linesize,
836  cur_src->width * 4)) {
837  memcpy(cur_dstp + y_end*cur_dst_linesize,
838  prv_dstp + y_end*prv_dst_linesize,
839  cur_dst->width);
840  y_end--;
841  }
842 
843  height = y_end + 1 - y_start;
844 
845  /* skip common columns */
846  while (x_start < x_end) {
847  int same_column = 1;
848  for (y = y_start; y <= y_end; y++) {
849  if (prv_srcp[y*prv_src_linesize + x_start] != cur_srcp[y*cur_src_linesize + x_start]) {
850  same_column = 0;
851  break;
852  }
853  }
854  if (!same_column)
855  break;
856  x_start++;
857  }
858  while (x_end > x_start) {
859  int same_column = 1;
860  for (y = y_start; y <= y_end; y++) {
861  if (prv_srcp[y*prv_src_linesize + x_end] != cur_srcp[y*cur_src_linesize + x_end]) {
862  same_column = 0;
863  break;
864  }
865  }
866  if (!same_column)
867  break;
868  x_end--;
869  }
870  width = x_end + 1 - x_start;
871 
872  if (x_start) {
873  for (y = y_start; y <= y_end; y++)
874  memcpy(cur_dstp + y*cur_dst_linesize,
875  prv_dstp + y*prv_dst_linesize, x_start);
876  }
877  if (x_end != cur_src->width - 1) {
878  const int copy_len = cur_src->width - 1 - x_end;
879  for (y = y_start; y <= y_end; y++)
880  memcpy(cur_dstp + y*cur_dst_linesize + x_end + 1,
881  prv_dstp + y*prv_dst_linesize + x_end + 1,
882  copy_len);
883  }
884  }
885  *xp = x_start;
886  *yp = y_start;
887  *wp = width;
888  *hp = height;
889 }
890 
891 static int apply_palette(AVFilterLink *inlink, AVFrame *in, AVFrame **outf)
892 {
893  int x, y, w, h, ret;
894  AVFilterContext *ctx = inlink->dst;
895  PaletteUseContext *s = ctx->priv;
896  AVFilterLink *outlink = inlink->dst->outputs[0];
897 
898  AVFrame *out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
899  if (!out) {
900  *outf = NULL;
901  return AVERROR(ENOMEM);
902  }
903  av_frame_copy_props(out, in);
904 
906  s->last_out, out, &x, &y, &w, &h);
909  if ((ret = av_frame_ref(s->last_in, in)) < 0 ||
910  (ret = av_frame_ref(s->last_out, out)) < 0 ||
911  (ret = av_frame_make_writable(s->last_in)) < 0) {
912  av_frame_free(&out);
913  *outf = NULL;
914  return ret;
915  }
916 
917  ff_dlog(ctx, "%dx%d rect: (%d;%d) -> (%d,%d) [area:%dx%d]\n",
918  w, h, x, y, x+w, y+h, in->width, in->height);
919 
920  ret = s->set_frame(s, out, in, x, y, w, h);
921  if (ret < 0) {
922  av_frame_free(&out);
923  *outf = NULL;
924  return ret;
925  }
926  memcpy(out->data[1], s->palette, AVPALETTE_SIZE);
927  if (s->calc_mean_err)
928  debug_mean_error(s, in, out, inlink->frame_count_out);
929  *outf = out;
930  return 0;
931 }
932 
933 static int config_output(AVFilterLink *outlink)
934 {
935  int ret;
936  AVFilterContext *ctx = outlink->src;
937  PaletteUseContext *s = ctx->priv;
938 
939  ret = ff_framesync_init_dualinput(&s->fs, ctx);
940  if (ret < 0)
941  return ret;
942  s->fs.opt_repeatlast = 1; // only 1 frame in the palette
943  s->fs.in[1].before = s->fs.in[1].after = EXT_INFINITY;
945 
946  outlink->w = ctx->inputs[0]->w;
947  outlink->h = ctx->inputs[0]->h;
948 
949  outlink->time_base = ctx->inputs[0]->time_base;
950  if ((ret = ff_framesync_configure(&s->fs)) < 0)
951  return ret;
952  return 0;
953 }
954 
956 {
957  AVFilterContext *ctx = inlink->dst;
958 
959  if (inlink->w * inlink->h != AVPALETTE_COUNT) {
960  av_log(ctx, AV_LOG_ERROR,
961  "Palette input must contain exactly %d pixels. "
962  "Specified input has %dx%d=%d pixels\n",
963  AVPALETTE_COUNT, inlink->w, inlink->h,
964  inlink->w * inlink->h);
965  return AVERROR(EINVAL);
966  }
967  return 0;
968 }
969 
970 static void load_palette(PaletteUseContext *s, const AVFrame *palette_frame)
971 {
972  int i, x, y;
973  const uint32_t *p = (const uint32_t *)palette_frame->data[0];
974  const int p_linesize = palette_frame->linesize[0] >> 2;
975 
976  s->transparency_index = -1;
977 
978  if (s->new) {
979  memset(s->palette, 0, sizeof(s->palette));
980  memset(s->map, 0, sizeof(s->map));
981  for (i = 0; i < CACHE_SIZE; i++)
982  av_freep(&s->cache[i].entries);
983  memset(s->cache, 0, sizeof(s->cache));
984  }
985 
986  i = 0;
987  for (y = 0; y < palette_frame->height; y++) {
988  for (x = 0; x < palette_frame->width; x++) {
989  s->palette[i] = p[x];
990  if (p[x]>>24 < s->trans_thresh) {
991  s->transparency_index = i; // we are assuming at most one transparent color in palette
992  }
993  i++;
994  }
995  p += p_linesize;
996  }
997 
998  load_colormap(s);
999 
1000  if (!s->new)
1001  s->palette_loaded = 1;
1002 }
1003 
1005 {
1006  AVFilterContext *ctx = fs->parent;
1007  AVFilterLink *inlink = ctx->inputs[0];
1008  PaletteUseContext *s = ctx->priv;
1009  AVFrame *master, *second, *out = NULL;
1010  int ret;
1011 
1012  // writable for error diffusal dithering
1013  ret = ff_framesync_dualinput_get_writable(fs, &master, &second);
1014  if (ret < 0)
1015  return ret;
1016  if (!master || !second) {
1017  av_frame_free(&master);
1018  return AVERROR_BUG;
1019  }
1020  if (!s->palette_loaded) {
1021  load_palette(s, second);
1022  }
1023  ret = apply_palette(inlink, master, &out);
1024  av_frame_free(&master);
1025  if (ret < 0)
1026  return ret;
1027  return ff_filter_frame(ctx->outputs[0], out);
1028 }
1029 
1030 #define DEFINE_SET_FRAME(color_search, name, value) \
1031 static int set_frame_##name(PaletteUseContext *s, AVFrame *out, AVFrame *in, \
1032  int x_start, int y_start, int w, int h) \
1033 { \
1034  return set_frame(s, out, in, x_start, y_start, w, h, value, color_search); \
1035 }
1036 
1037 #define DEFINE_SET_FRAME_COLOR_SEARCH(color_search, color_search_macro) \
1038  DEFINE_SET_FRAME(color_search_macro, color_search##_##none, DITHERING_NONE) \
1039  DEFINE_SET_FRAME(color_search_macro, color_search##_##bayer, DITHERING_BAYER) \
1040  DEFINE_SET_FRAME(color_search_macro, color_search##_##heckbert, DITHERING_HECKBERT) \
1041  DEFINE_SET_FRAME(color_search_macro, color_search##_##floyd_steinberg, DITHERING_FLOYD_STEINBERG) \
1042  DEFINE_SET_FRAME(color_search_macro, color_search##_##sierra2, DITHERING_SIERRA2) \
1043  DEFINE_SET_FRAME(color_search_macro, color_search##_##sierra2_4a, DITHERING_SIERRA2_4A) \
1044 
1048 
1049 #define DITHERING_ENTRIES(color_search) { \
1050  set_frame_##color_search##_none, \
1051  set_frame_##color_search##_bayer, \
1052  set_frame_##color_search##_heckbert, \
1053  set_frame_##color_search##_floyd_steinberg, \
1054  set_frame_##color_search##_sierra2, \
1055  set_frame_##color_search##_sierra2_4a, \
1056 }
1057 
1059  DITHERING_ENTRIES(nns_iterative),
1060  DITHERING_ENTRIES(nns_recursive),
1061  DITHERING_ENTRIES(bruteforce),
1062 };
1063 
1064 static int dither_value(int p)
1065 {
1066  const int q = p ^ (p >> 3);
1067  return (p & 4) >> 2 | (q & 4) >> 1 \
1068  | (p & 2) << 1 | (q & 2) << 2 \
1069  | (p & 1) << 4 | (q & 1) << 5;
1070 }
1071 
1073 {
1074  PaletteUseContext *s = ctx->priv;
1075 
1076  s->last_in = av_frame_alloc();
1077  s->last_out = av_frame_alloc();
1078  if (!s->last_in || !s->last_out) {
1079  av_frame_free(&s->last_in);
1080  av_frame_free(&s->last_out);
1081  return AVERROR(ENOMEM);
1082  }
1083 
1084  s->set_frame = set_frame_lut[s->color_search_method][s->dither];
1085 
1086  if (s->dither == DITHERING_BAYER) {
1087  int i;
1088  const int delta = 1 << (5 - s->bayer_scale); // to avoid too much luma
1089 
1090  for (i = 0; i < FF_ARRAY_ELEMS(s->ordered_dither); i++)
1091  s->ordered_dither[i] = (dither_value(i) >> s->bayer_scale) - delta;
1092  }
1093 
1094  return 0;
1095 }
1096 
1098 {
1099  PaletteUseContext *s = ctx->priv;
1100  return ff_framesync_activate(&s->fs);
1101 }
1102 
1104 {
1105  int i;
1106  PaletteUseContext *s = ctx->priv;
1107 
1108  ff_framesync_uninit(&s->fs);
1109  for (i = 0; i < CACHE_SIZE; i++)
1110  av_freep(&s->cache[i].entries);
1111  av_frame_free(&s->last_in);
1112  av_frame_free(&s->last_out);
1113 }
1114 
1115 static const AVFilterPad paletteuse_inputs[] = {
1116  {
1117  .name = "default",
1118  .type = AVMEDIA_TYPE_VIDEO,
1119  },{
1120  .name = "palette",
1121  .type = AVMEDIA_TYPE_VIDEO,
1122  .config_props = config_input_palette,
1123  },
1124  { NULL }
1125 };
1126 
1128  {
1129  .name = "default",
1130  .type = AVMEDIA_TYPE_VIDEO,
1131  .config_props = config_output,
1132  },
1133  { NULL }
1134 };
1135 
1137  .name = "paletteuse",
1138  .description = NULL_IF_CONFIG_SMALL("Use a palette to downsample an input video stream."),
1139  .priv_size = sizeof(PaletteUseContext),
1141  .init = init,
1142  .uninit = uninit,
1143  .activate = activate,
1144  .inputs = paletteuse_inputs,
1145  .outputs = paletteuse_outputs,
1146  .priv_class = &paletteuse_class,
1147 };
diff_mode
Definition: vf_paletteuse.c:52
static av_always_inline int get_dst_color_err(PaletteUseContext *s, uint32_t c, int *er, int *eg, int *eb, const enum color_search_method search_method)
static void colormap_nearest_node(const struct color_node *map, const int node_pos, const uint8_t *target, const int trans_thresh, struct nearest_color *nearest)
uint64_t total_mean_err
AVFILTER_DEFINE_CLASS(paletteuse)
#define NULL
Definition: coverity.c:32
void av_bprintf(AVBPrint *buf, const char *fmt,...)
Definition: bprint.c:94
static int shift(int a, int b)
Definition: sonic.c:82
static void load_palette(PaletteUseContext *s, const AVFrame *palette_frame)
This structure describes decoded (raw) audio or video data.
Definition: frame.h:300
static int colormap_insert(struct color_node *map, uint8_t *color_used, int *nb_used, const uint32_t *palette, const int trans_thresh, const struct color_rect *box)
AVOption.
Definition: opt.h:246
color_search_method
Definition: vf_paletteuse.c:45
Main libavfilter public API header.
const char * g
Definition: vf_curves.c:115
dithering_mode
Definition: vf_paletteuse.c:35
static int query_formats(AVFilterContext *ctx)
FILE * av_fopen_utf8(const char *path, const char *mode)
Open a file using a UTF-8 filename.
Definition: file_open.c:158
static av_always_inline uint8_t colormap_nearest_iterative(const struct color_node *root, const uint8_t *target, const int trans_thresh)
const char * b
Definition: vf_curves.c:116
static const AVFilterPad paletteuse_outputs[]
static av_always_inline uint8_t colormap_nearest_recursive(const struct color_node *node, const uint8_t *rgb, const int trans_thresh)
int ff_framesync_configure(FFFrameSync *fs)
Configure a frame sync structure.
Definition: framesync.c:117
static av_always_inline int dither_color(uint32_t px, int er, int eg, int eb, int scale, int shift)
const char * master
Definition: vf_curves.c:117
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
Definition: video.c:104
uint8_t val[4]
Definition: vf_paletteuse.c:59
static av_cold int init(AVFilterContext *ctx)
int av_bprint_finalize(AVBPrint *buf, char **ret_str)
Finalize a print buffer.
Definition: bprint.c:235
enum FFFrameSyncExtMode before
Extrapolation mode for timestamps before the first frame.
Definition: framesync.h:86
AVFilterFormats * ff_make_format_list(const int *fmts)
Create a list of supported formats.
Definition: formats.c:300
const char * name
Pad name.
Definition: internal.h:60
AVFilterContext * parent
Parent filter context.
Definition: framesync.h:152
AVFilterLink ** inputs
array of pointers to input links
Definition: avfilter.h:346
AVFilter ff_vf_paletteuse
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
Definition: avfilter.c:1075
uint8_t
#define av_cold
Definition: attributes.h:88
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
Definition: frame.c:190
#define fs(width, name, subs,...)
Definition: cbs_vp9.c:259
float delta
8 bits with AV_PIX_FMT_RGB32 palette
Definition: pixfmt.h:77
AVOptions.
uint8_t pal_id
#define INDENT
static const uint32_t color[16+AV_CLASS_CATEGORY_NB]
Definition: log.c:92
int ff_framesync_init_dualinput(FFFrameSync *fs, AVFilterContext *parent)
Initialize a frame sync structure for dualinput.
Definition: framesync.c:351
#define AVPALETTE_SIZE
Definition: pixfmt.h:32
#define f(width, name)
Definition: cbs_vp9.c:255
static av_cold int end(AVCodecContext *avctx)
Definition: avrndec.c:92
uint32_t color
Definition: vf_paletteuse.c:69
int ff_framesync_dualinput_get_writable(FFFrameSync *fs, AVFrame **f0, AVFrame **f1)
Same as ff_framesync_dualinput_get(), but make sure that f0 is writable.
Definition: framesync.c:389
static const cmp_func cmp_funcs[]
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
Definition: frame.c:444
static int config_input_palette(AVFilterLink *inlink)
FFFrameSyncIn * in
Pointer to array of inputs.
Definition: framesync.h:203
const char data[16]
Definition: mxf.c:91
#define height
FFFrameSync fs
Definition: vf_paletteuse.c:85
static const uint64_t c1
Definition: murmur3.c:49
#define ff_dlog(a,...)
int(* set_frame_func)(struct PaletteUseContext *s, AVFrame *out, AVFrame *in, int x_start, int y_start, int width, int height)
Definition: vf_paletteuse.c:80
enum FFFrameSyncExtMode after
Extrapolation mode for timestamps after the last frame.
Definition: framesync.h:91
#define max(a, b)
Definition: cuda_runtime.h:33
uint32_t palette[AVPALETTE_COUNT]
Definition: vf_paletteuse.c:88
static const AVOption paletteuse_options[]
#define av_log(a,...)
A filter pad used for either input or output.
Definition: internal.h:54
uint8_t hash[HASH_SIZE]
Definition: movenc.c:57
#define DEFINE_SET_FRAME_COLOR_SEARCH(color_search, color_search_macro)
static int disp_tree(const struct color_node *node, const char *fname)
set_frame_func set_frame
Definition: vf_paletteuse.c:94
#define src
Definition: vp8dsp.c:254
static int load_apply_palette(FFFrameSync *fs)
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:269
int width
Definition: frame.h:358
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
uint8_t max[3]
#define AV_BPRINT_SIZE_UNLIMITED
void ff_framesync_uninit(FFFrameSync *fs)
Free all memory currently allocated.
Definition: framesync.c:283
Frame sync structure.
Definition: framesync.h:146
#define AVERROR(e)
Definition: error.h:43
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
Definition: frame.c:203
#define COLORMAP_NEAREST(search, palette, root, target, trans_thresh)
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:188
void av_bprint_init(AVBPrint *buf, unsigned size_init, unsigned size_max)
Definition: bprint.c:69
const char * r
Definition: vf_curves.c:114
static const uint8_t dither[8][8]
Definition: vf_fspp.c:57
void * priv
private data for use by the filter
Definition: avfilter.h:353
unsigned int pos
Definition: spdifenc.c:412
static const set_frame_func set_frame_lut[NB_COLOR_SEARCHES][NB_DITHERING]
int ff_framesync_activate(FFFrameSync *fs)
Examine the frames in the filter&#39;s input and try to produce output.
Definition: framesync.c:334
int(* on_event)(struct FFFrameSync *fs)
Callback called when a frame event is ready.
Definition: framesync.h:172
int opt_repeatlast
Definition: framesync.h:205
static int dither_value(int p)
static int debug_accuracy(const struct color_node *node, const uint32_t *palette, const int trans_thresh, const enum color_search_method search_method)
common internal API header
static int get_next_color(const uint8_t *color_used, const uint32_t *palette, const int trans_thresh, int *component, const struct color_rect *box)
static void disp_node(AVBPrint *buf, const struct color_node *map, int parent_id, int node_id, int depth)
#define width
int ff_formats_ref(AVFilterFormats *f, AVFilterFormats **ref)
Add *ref as a new reference to formats.
Definition: formats.c:484
static void set_processing_window(enum diff_mode diff_mode, const AVFrame *prv_src, const AVFrame *cur_src, const AVFrame *prv_dst, AVFrame *cur_dst, int *xp, int *yp, int *wp, int *hp)
uint8_t w
Definition: llviddspenc.c:38
#define av_err2str(errnum)
Convenience macro, the return value should be used only directly in function arguments but never stan...
Definition: error.h:119
AVFormatContext * ctx
Definition: movenc.c:48
#define NBITS
Definition: vf_paletteuse.c:65
static int apply_palette(AVFilterLink *inlink, AVFrame *in, AVFrame **outf)
uint8_t min[3]
#define s(width, name)
Definition: cbs_vp9.c:257
static const AVFilterPad inputs[]
Definition: af_acontrast.c:193
static int activate(AVFilterContext *ctx)
static const AVFilterPad outputs[]
Definition: af_acontrast.c:203
#define FF_ARRAY_ELEMS(a)
static int config_output(AVFilterLink *outlink)
#define src1
Definition: h264pred.c:139
#define AV_LOG_INFO
Standard information.
Definition: log.h:187
Extend the frame to infinity.
Definition: framesync.h:75
static int cmp_pal_entry(const void *a, const void *b)
void * av_dynarray2_add(void **tab_ptr, int *nb_ptr, size_t elem_size, const uint8_t *elem_data)
Add an element of size elem_size to a dynamic array.
Definition: mem.c:324
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:331
static av_always_inline int color_get(PaletteUseContext *s, uint32_t color, uint8_t a, uint8_t r, uint8_t g, uint8_t b, const enum color_search_method search_method)
Check if the requested color is in the cache already.
#define AV_PIX_FMT_RGB32
Definition: pixfmt.h:370
AVFrame * last_out
Definition: vf_paletteuse.c:99
#define AVERROR_BUG
Internal bug, also see AVERROR_BUG2.
Definition: error.h:50
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
Describe the class of an AVClass context structure.
Definition: log.h:67
#define DITHERING_ENTRIES(color_search)
Filter definition.
Definition: avfilter.h:144
const char * name
Filter name.
Definition: avfilter.h:148
static void load_colormap(PaletteUseContext *s)
const VDPAUPixFmtMap * map
#define DECLARE_CMP_FUNC(name, pos)
#define OFFSET(x)
AVFilterLink ** outputs
array of pointers to output links
Definition: avfilter.h:350
#define AVPALETTE_COUNT
Definition: pixfmt.h:33
void av_frame_unref(AVFrame *frame)
Unreference all the buffers referenced by frame and reset the frame fields.
Definition: frame.c:554
int av_frame_make_writable(AVFrame *frame)
Ensure that the frame data is writable, avoiding data copy if possible.
Definition: frame.c:612
#define FLAGS
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:314
int
uint8_t pal_entry
Definition: vf_paletteuse.c:70
struct cache_node cache[CACHE_SIZE]
Definition: vf_paletteuse.c:86
int(* cmp_func)(const void *, const void *)
if(ret< 0)
Definition: vf_mcdeint.c:279
static double c[64]
struct cached_color * entries
Definition: vf_paletteuse.c:74
static const uint64_t c2
Definition: murmur3.c:50
static av_always_inline int set_frame(PaletteUseContext *s, AVFrame *out, AVFrame *in, int x_start, int y_start, int w, int h, enum dithering_mode dither, const enum color_search_method search_method)
static av_cold void uninit(AVFilterContext *ctx)
An instance of a filter.
Definition: avfilter.h:338
uint8_t palette_id
Definition: vf_paletteuse.c:60
int height
Definition: frame.h:358
FILE * out
Definition: movenc.c:54
#define av_freep(p)
#define av_always_inline
Definition: attributes.h:45
static const AVFilterPad paletteuse_inputs[]
static av_always_inline uint8_t colormap_nearest_bruteforce(const uint32_t *palette, const uint8_t *argb, const int trans_thresh)
#define CACHE_SIZE
Definition: vf_paletteuse.c:66
internal API functions
static av_always_inline int diff(const uint8_t *c1, const uint8_t *c2, const int trans_thresh)
struct color_node map[AVPALETTE_COUNT]
Definition: vf_paletteuse.c:87
float min
uint32_t value
AVPixelFormat
Pixel format.
Definition: pixfmt.h:64
#define AV_QSORT(p, num, type, cmp)
Quicksort This sort is fast, and fully inplace but not stable and it is possible to construct input t...
Definition: qsort.h:33
for(j=16;j >0;--j)
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
Definition: frame.c:659
int ordered_dither[8 *8]
Definition: vf_paletteuse.c:96
static void debug_mean_error(PaletteUseContext *s, const AVFrame *in1, const AVFrame *in2, int frame_count)