FFmpeg  4.3.9
utils.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 #include "config.h"
22 
23 #define _DEFAULT_SOURCE
24 #define _SVID_SOURCE // needed for MAP_ANONYMOUS
25 #define _DARWIN_C_SOURCE // needed for MAP_ANON
26 #include <inttypes.h>
27 #include <math.h>
28 #include <stdio.h>
29 #include <string.h>
30 #if HAVE_MMAP
31 #include <sys/mman.h>
32 #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
33 #define MAP_ANONYMOUS MAP_ANON
34 #endif
35 #endif
36 #if HAVE_VIRTUALALLOC
37 #define WIN32_LEAN_AND_MEAN
38 #include <windows.h>
39 #endif
40 
41 #include "libavutil/attributes.h"
42 #include "libavutil/avassert.h"
43 #include "libavutil/avutil.h"
44 #include "libavutil/bswap.h"
45 #include "libavutil/cpu.h"
46 #include "libavutil/imgutils.h"
47 #include "libavutil/intreadwrite.h"
48 #include "libavutil/libm.h"
49 #include "libavutil/mathematics.h"
50 #include "libavutil/opt.h"
51 #include "libavutil/pixdesc.h"
52 #include "libavutil/aarch64/cpu.h"
53 #include "libavutil/ppc/cpu.h"
54 #include "libavutil/x86/asm.h"
55 #include "libavutil/x86/cpu.h"
56 
57 // We have to implement deprecated functions until they are removed, this is the
58 // simplest way to prevent warnings
59 #undef attribute_deprecated
60 #define attribute_deprecated
61 
62 #include "rgb2rgb.h"
63 #include "swscale.h"
64 #include "swscale_internal.h"
65 
66 #if !FF_API_SWS_VECTOR
67 static SwsVector *sws_getIdentityVec(void);
68 static void sws_addVec(SwsVector *a, SwsVector *b);
69 static void sws_shiftVec(SwsVector *a, int shift);
70 static void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level);
71 #endif
72 
73 static void handle_formats(SwsContext *c);
74 
75 unsigned swscale_version(void)
76 {
79 }
80 
81 const char *swscale_configuration(void)
82 {
83  return FFMPEG_CONFIGURATION;
84 }
85 
86 const char *swscale_license(void)
87 {
88 #define LICENSE_PREFIX "libswscale license: "
89  return &LICENSE_PREFIX FFMPEG_LICENSE[sizeof(LICENSE_PREFIX) - 1];
90 }
91 
92 typedef struct FormatEntry {
96 } FormatEntry;
97 
98 static const FormatEntry format_entries[] = {
99  [AV_PIX_FMT_YUV420P] = { 1, 1 },
100  [AV_PIX_FMT_YUYV422] = { 1, 1 },
101  [AV_PIX_FMT_RGB24] = { 1, 1 },
102  [AV_PIX_FMT_BGR24] = { 1, 1 },
103  [AV_PIX_FMT_YUV422P] = { 1, 1 },
104  [AV_PIX_FMT_YUV444P] = { 1, 1 },
105  [AV_PIX_FMT_YUV410P] = { 1, 1 },
106  [AV_PIX_FMT_YUV411P] = { 1, 1 },
107  [AV_PIX_FMT_GRAY8] = { 1, 1 },
108  [AV_PIX_FMT_MONOWHITE] = { 1, 1 },
109  [AV_PIX_FMT_MONOBLACK] = { 1, 1 },
110  [AV_PIX_FMT_PAL8] = { 1, 0 },
111  [AV_PIX_FMT_YUVJ420P] = { 1, 1 },
112  [AV_PIX_FMT_YUVJ411P] = { 1, 1 },
113  [AV_PIX_FMT_YUVJ422P] = { 1, 1 },
114  [AV_PIX_FMT_YUVJ444P] = { 1, 1 },
115  [AV_PIX_FMT_YVYU422] = { 1, 1 },
116  [AV_PIX_FMT_UYVY422] = { 1, 1 },
117  [AV_PIX_FMT_UYYVYY411] = { 0, 0 },
118  [AV_PIX_FMT_BGR8] = { 1, 1 },
119  [AV_PIX_FMT_BGR4] = { 0, 1 },
120  [AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
121  [AV_PIX_FMT_RGB8] = { 1, 1 },
122  [AV_PIX_FMT_RGB4] = { 0, 1 },
123  [AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
124  [AV_PIX_FMT_NV12] = { 1, 1 },
125  [AV_PIX_FMT_NV21] = { 1, 1 },
126  [AV_PIX_FMT_ARGB] = { 1, 1 },
127  [AV_PIX_FMT_RGBA] = { 1, 1 },
128  [AV_PIX_FMT_ABGR] = { 1, 1 },
129  [AV_PIX_FMT_BGRA] = { 1, 1 },
130  [AV_PIX_FMT_0RGB] = { 1, 1 },
131  [AV_PIX_FMT_RGB0] = { 1, 1 },
132  [AV_PIX_FMT_0BGR] = { 1, 1 },
133  [AV_PIX_FMT_BGR0] = { 1, 1 },
134  [AV_PIX_FMT_GRAY9BE] = { 1, 1 },
135  [AV_PIX_FMT_GRAY9LE] = { 1, 1 },
136  [AV_PIX_FMT_GRAY10BE] = { 1, 1 },
137  [AV_PIX_FMT_GRAY10LE] = { 1, 1 },
138  [AV_PIX_FMT_GRAY12BE] = { 1, 1 },
139  [AV_PIX_FMT_GRAY12LE] = { 1, 1 },
140  [AV_PIX_FMT_GRAY14BE] = { 1, 1 },
141  [AV_PIX_FMT_GRAY14LE] = { 1, 1 },
142  [AV_PIX_FMT_GRAY16BE] = { 1, 1 },
143  [AV_PIX_FMT_GRAY16LE] = { 1, 1 },
144  [AV_PIX_FMT_YUV440P] = { 1, 1 },
145  [AV_PIX_FMT_YUVJ440P] = { 1, 1 },
146  [AV_PIX_FMT_YUV440P10LE] = { 1, 1 },
147  [AV_PIX_FMT_YUV440P10BE] = { 1, 1 },
148  [AV_PIX_FMT_YUV440P12LE] = { 1, 1 },
149  [AV_PIX_FMT_YUV440P12BE] = { 1, 1 },
150  [AV_PIX_FMT_YUVA420P] = { 1, 1 },
151  [AV_PIX_FMT_YUVA422P] = { 1, 1 },
152  [AV_PIX_FMT_YUVA444P] = { 1, 1 },
153  [AV_PIX_FMT_YUVA420P9BE] = { 1, 1 },
154  [AV_PIX_FMT_YUVA420P9LE] = { 1, 1 },
155  [AV_PIX_FMT_YUVA422P9BE] = { 1, 1 },
156  [AV_PIX_FMT_YUVA422P9LE] = { 1, 1 },
157  [AV_PIX_FMT_YUVA444P9BE] = { 1, 1 },
158  [AV_PIX_FMT_YUVA444P9LE] = { 1, 1 },
159  [AV_PIX_FMT_YUVA420P10BE]= { 1, 1 },
160  [AV_PIX_FMT_YUVA420P10LE]= { 1, 1 },
161  [AV_PIX_FMT_YUVA422P10BE]= { 1, 1 },
162  [AV_PIX_FMT_YUVA422P10LE]= { 1, 1 },
163  [AV_PIX_FMT_YUVA444P10BE]= { 1, 1 },
164  [AV_PIX_FMT_YUVA444P10LE]= { 1, 1 },
165  [AV_PIX_FMT_YUVA420P16BE]= { 1, 1 },
166  [AV_PIX_FMT_YUVA420P16LE]= { 1, 1 },
167  [AV_PIX_FMT_YUVA422P16BE]= { 1, 1 },
168  [AV_PIX_FMT_YUVA422P16LE]= { 1, 1 },
169  [AV_PIX_FMT_YUVA444P16BE]= { 1, 1 },
170  [AV_PIX_FMT_YUVA444P16LE]= { 1, 1 },
171  [AV_PIX_FMT_RGB48BE] = { 1, 1 },
172  [AV_PIX_FMT_RGB48LE] = { 1, 1 },
173  [AV_PIX_FMT_RGBA64BE] = { 1, 1, 1 },
174  [AV_PIX_FMT_RGBA64LE] = { 1, 1, 1 },
175  [AV_PIX_FMT_RGB565BE] = { 1, 1 },
176  [AV_PIX_FMT_RGB565LE] = { 1, 1 },
177  [AV_PIX_FMT_RGB555BE] = { 1, 1 },
178  [AV_PIX_FMT_RGB555LE] = { 1, 1 },
179  [AV_PIX_FMT_BGR565BE] = { 1, 1 },
180  [AV_PIX_FMT_BGR565LE] = { 1, 1 },
181  [AV_PIX_FMT_BGR555BE] = { 1, 1 },
182  [AV_PIX_FMT_BGR555LE] = { 1, 1 },
183  [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
184  [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
185  [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
186  [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
187  [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
188  [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
189  [AV_PIX_FMT_RGB444LE] = { 1, 1 },
190  [AV_PIX_FMT_RGB444BE] = { 1, 1 },
191  [AV_PIX_FMT_BGR444LE] = { 1, 1 },
192  [AV_PIX_FMT_BGR444BE] = { 1, 1 },
193  [AV_PIX_FMT_YA8] = { 1, 1 },
194  [AV_PIX_FMT_YA16BE] = { 1, 1 },
195  [AV_PIX_FMT_YA16LE] = { 1, 1 },
196  [AV_PIX_FMT_BGR48BE] = { 1, 1 },
197  [AV_PIX_FMT_BGR48LE] = { 1, 1 },
198  [AV_PIX_FMT_BGRA64BE] = { 1, 1, 1 },
199  [AV_PIX_FMT_BGRA64LE] = { 1, 1, 1 },
200  [AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
201  [AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
202  [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
203  [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
204  [AV_PIX_FMT_YUV420P12BE] = { 1, 1 },
205  [AV_PIX_FMT_YUV420P12LE] = { 1, 1 },
206  [AV_PIX_FMT_YUV420P14BE] = { 1, 1 },
207  [AV_PIX_FMT_YUV420P14LE] = { 1, 1 },
208  [AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
209  [AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
210  [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
211  [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
212  [AV_PIX_FMT_YUV422P12BE] = { 1, 1 },
213  [AV_PIX_FMT_YUV422P12LE] = { 1, 1 },
214  [AV_PIX_FMT_YUV422P14BE] = { 1, 1 },
215  [AV_PIX_FMT_YUV422P14LE] = { 1, 1 },
216  [AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
217  [AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
218  [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
219  [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
220  [AV_PIX_FMT_YUV444P12BE] = { 1, 1 },
221  [AV_PIX_FMT_YUV444P12LE] = { 1, 1 },
222  [AV_PIX_FMT_YUV444P14BE] = { 1, 1 },
223  [AV_PIX_FMT_YUV444P14LE] = { 1, 1 },
224  [AV_PIX_FMT_GBRP] = { 1, 1 },
225  [AV_PIX_FMT_GBRP9LE] = { 1, 1 },
226  [AV_PIX_FMT_GBRP9BE] = { 1, 1 },
227  [AV_PIX_FMT_GBRP10LE] = { 1, 1 },
228  [AV_PIX_FMT_GBRP10BE] = { 1, 1 },
229  [AV_PIX_FMT_GBRAP10LE] = { 1, 1 },
230  [AV_PIX_FMT_GBRAP10BE] = { 1, 1 },
231  [AV_PIX_FMT_GBRP12LE] = { 1, 1 },
232  [AV_PIX_FMT_GBRP12BE] = { 1, 1 },
233  [AV_PIX_FMT_GBRAP12LE] = { 1, 1 },
234  [AV_PIX_FMT_GBRAP12BE] = { 1, 1 },
235  [AV_PIX_FMT_GBRP14LE] = { 1, 1 },
236  [AV_PIX_FMT_GBRP14BE] = { 1, 1 },
237  [AV_PIX_FMT_GBRP16LE] = { 1, 1 },
238  [AV_PIX_FMT_GBRP16BE] = { 1, 1 },
239  [AV_PIX_FMT_GBRPF32LE] = { 1, 1 },
240  [AV_PIX_FMT_GBRPF32BE] = { 1, 1 },
241  [AV_PIX_FMT_GBRAPF32LE] = { 1, 1 },
242  [AV_PIX_FMT_GBRAPF32BE] = { 1, 1 },
243  [AV_PIX_FMT_GBRAP] = { 1, 1 },
244  [AV_PIX_FMT_GBRAP16LE] = { 1, 1 },
245  [AV_PIX_FMT_GBRAP16BE] = { 1, 1 },
246  [AV_PIX_FMT_BAYER_BGGR8] = { 1, 0 },
247  [AV_PIX_FMT_BAYER_RGGB8] = { 1, 0 },
248  [AV_PIX_FMT_BAYER_GBRG8] = { 1, 0 },
249  [AV_PIX_FMT_BAYER_GRBG8] = { 1, 0 },
250  [AV_PIX_FMT_BAYER_BGGR16LE] = { 1, 0 },
251  [AV_PIX_FMT_BAYER_BGGR16BE] = { 1, 0 },
252  [AV_PIX_FMT_BAYER_RGGB16LE] = { 1, 0 },
253  [AV_PIX_FMT_BAYER_RGGB16BE] = { 1, 0 },
254  [AV_PIX_FMT_BAYER_GBRG16LE] = { 1, 0 },
255  [AV_PIX_FMT_BAYER_GBRG16BE] = { 1, 0 },
256  [AV_PIX_FMT_BAYER_GRBG16LE] = { 1, 0 },
257  [AV_PIX_FMT_BAYER_GRBG16BE] = { 1, 0 },
258  [AV_PIX_FMT_XYZ12BE] = { 1, 1, 1 },
259  [AV_PIX_FMT_XYZ12LE] = { 1, 1, 1 },
260  [AV_PIX_FMT_AYUV64LE] = { 1, 1},
261  [AV_PIX_FMT_P010LE] = { 1, 1 },
262  [AV_PIX_FMT_P010BE] = { 1, 1 },
263  [AV_PIX_FMT_P016LE] = { 1, 1 },
264  [AV_PIX_FMT_P016BE] = { 1, 1 },
265  [AV_PIX_FMT_GRAYF32LE] = { 1, 1 },
266  [AV_PIX_FMT_GRAYF32BE] = { 1, 1 },
267  [AV_PIX_FMT_YUVA422P12BE] = { 1, 1 },
268  [AV_PIX_FMT_YUVA422P12LE] = { 1, 1 },
269  [AV_PIX_FMT_YUVA444P12BE] = { 1, 1 },
270  [AV_PIX_FMT_YUVA444P12LE] = { 1, 1 },
271  [AV_PIX_FMT_NV24] = { 1, 1 },
272  [AV_PIX_FMT_NV42] = { 1, 1 },
273  [AV_PIX_FMT_Y210LE] = { 1, 0 },
274 };
275 
277 {
278  return (unsigned)pix_fmt < FF_ARRAY_ELEMS(format_entries) ?
279  format_entries[pix_fmt].is_supported_in : 0;
280 }
281 
283 {
284  return (unsigned)pix_fmt < FF_ARRAY_ELEMS(format_entries) ?
285  format_entries[pix_fmt].is_supported_out : 0;
286 }
287 
289 {
290  return (unsigned)pix_fmt < FF_ARRAY_ELEMS(format_entries) ?
291  format_entries[pix_fmt].is_supported_endianness : 0;
292 }
293 
294 static double getSplineCoeff(double a, double b, double c, double d,
295  double dist)
296 {
297  if (dist <= 1.0)
298  return ((d * dist + c) * dist + b) * dist + a;
299  else
300  return getSplineCoeff(0.0,
301  b + 2.0 * c + 3.0 * d,
302  c + 3.0 * d,
303  -b - 3.0 * c - 6.0 * d,
304  dist - 1.0);
305 }
306 
307 static av_cold int get_local_pos(SwsContext *s, int chr_subsample, int pos, int dir)
308 {
309  if (pos == -1 || pos <= -513) {
310  pos = (128 << chr_subsample) - 128;
311  }
312  pos += 128; // relative to ideal left edge
313  return pos >> chr_subsample;
314 }
315 
316 typedef struct {
317  int flag; ///< flag associated to the algorithm
318  const char *description; ///< human-readable description
319  int size_factor; ///< size factor used when initing the filters
321 
323  { SWS_AREA, "area averaging", 1 /* downscale only, for upscale it is bilinear */ },
324  { SWS_BICUBIC, "bicubic", 4 },
325  { SWS_BICUBLIN, "luma bicubic / chroma bilinear", -1 },
326  { SWS_BILINEAR, "bilinear", 2 },
327  { SWS_FAST_BILINEAR, "fast bilinear", -1 },
328  { SWS_GAUSS, "Gaussian", 8 /* infinite ;) */ },
329  { SWS_LANCZOS, "Lanczos", -1 /* custom */ },
330  { SWS_POINT, "nearest neighbor / point", -1 },
331  { SWS_SINC, "sinc", 20 /* infinite ;) */ },
332  { SWS_SPLINE, "bicubic spline", 20 /* infinite :)*/ },
333  { SWS_X, "experimental", 8 },
334 };
335 
336 static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos,
337  int *outFilterSize, int xInc, int srcW,
338  int dstW, int filterAlign, int one,
339  int flags, int cpu_flags,
340  SwsVector *srcFilter, SwsVector *dstFilter,
341  double param[2], int srcPos, int dstPos)
342 {
343  int i;
344  int filterSize;
345  int filter2Size;
346  int minFilterSize;
347  int64_t *filter = NULL;
348  int64_t *filter2 = NULL;
349  const int64_t fone = 1LL << (54 - FFMIN(av_log2(srcW/dstW), 8));
350  int ret = -1;
351 
352  emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
353 
354  // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
355  FF_ALLOC_ARRAY_OR_GOTO(NULL, *filterPos, (dstW + 3), sizeof(**filterPos), fail);
356 
357  if (FFABS(xInc - 0x10000) < 10 && srcPos == dstPos) { // unscaled
358  int i;
359  filterSize = 1;
361  dstW, sizeof(*filter) * filterSize, fail);
362 
363  for (i = 0; i < dstW; i++) {
364  filter[i * filterSize] = fone;
365  (*filterPos)[i] = i;
366  }
367  } else if (flags & SWS_POINT) { // lame looking point sampling mode
368  int i;
369  int64_t xDstInSrc;
370  filterSize = 1;
372  dstW, sizeof(*filter) * filterSize, fail);
373 
374  xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
375  for (i = 0; i < dstW; i++) {
376  int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
377 
378  (*filterPos)[i] = xx;
379  filter[i] = fone;
380  xDstInSrc += xInc;
381  }
382  } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
383  (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
384  int i;
385  int64_t xDstInSrc;
386  filterSize = 2;
388  dstW, sizeof(*filter) * filterSize, fail);
389 
390  xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
391  for (i = 0; i < dstW; i++) {
392  int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
393  int j;
394 
395  (*filterPos)[i] = xx;
396  // bilinear upscale / linear interpolate / area averaging
397  for (j = 0; j < filterSize; j++) {
398  int64_t coeff = fone - FFABS((int64_t)xx * (1 << 16) - xDstInSrc) * (fone >> 16);
399  if (coeff < 0)
400  coeff = 0;
401  filter[i * filterSize + j] = coeff;
402  xx++;
403  }
404  xDstInSrc += xInc;
405  }
406  } else {
407  int64_t xDstInSrc;
408  int sizeFactor = -1;
409 
410  for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
411  if (flags & scale_algorithms[i].flag && scale_algorithms[i].size_factor > 0) {
412  sizeFactor = scale_algorithms[i].size_factor;
413  break;
414  }
415  }
416  if (flags & SWS_LANCZOS)
417  sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
418  av_assert0(sizeFactor > 0);
419 
420  if (xInc <= 1 << 16)
421  filterSize = 1 + sizeFactor; // upscale
422  else
423  filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
424 
425  filterSize = FFMIN(filterSize, srcW - 2);
426  filterSize = FFMAX(filterSize, 1);
427 
429  dstW, sizeof(*filter) * filterSize, fail);
430 
431  xDstInSrc = ((dstPos*(int64_t)xInc)>>7) - ((srcPos*0x10000LL)>>7);
432  for (i = 0; i < dstW; i++) {
433  int xx = (xDstInSrc - (filterSize - 2) * (1LL<<16)) / (1 << 17);
434  int j;
435  (*filterPos)[i] = xx;
436  for (j = 0; j < filterSize; j++) {
437  int64_t d = (FFABS(((int64_t)xx * (1 << 17)) - xDstInSrc)) << 13;
438  double floatd;
439  int64_t coeff;
440 
441  if (xInc > 1 << 16)
442  d = d * dstW / srcW;
443  floatd = d * (1.0 / (1 << 30));
444 
445  if (flags & SWS_BICUBIC) {
446  int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
447  int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
448 
449  if (d >= 1LL << 31) {
450  coeff = 0.0;
451  } else {
452  int64_t dd = (d * d) >> 30;
453  int64_t ddd = (dd * d) >> 30;
454 
455  if (d < 1LL << 30)
456  coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
457  (-18 * (1 << 24) + 12 * B + 6 * C) * dd +
458  (6 * (1 << 24) - 2 * B) * (1 << 30);
459  else
460  coeff = (-B - 6 * C) * ddd +
461  (6 * B + 30 * C) * dd +
462  (-12 * B - 48 * C) * d +
463  (8 * B + 24 * C) * (1 << 30);
464  }
465  coeff /= (1LL<<54)/fone;
466  } else if (flags & SWS_X) {
467  double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
468  double c;
469 
470  if (floatd < 1.0)
471  c = cos(floatd * M_PI);
472  else
473  c = -1.0;
474  if (c < 0.0)
475  c = -pow(-c, A);
476  else
477  c = pow(c, A);
478  coeff = (c * 0.5 + 0.5) * fone;
479  } else if (flags & SWS_AREA) {
480  int64_t d2 = d - (1 << 29);
481  if (d2 * xInc < -(1LL << (29 + 16)))
482  coeff = 1.0 * (1LL << (30 + 16));
483  else if (d2 * xInc < (1LL << (29 + 16)))
484  coeff = -d2 * xInc + (1LL << (29 + 16));
485  else
486  coeff = 0.0;
487  coeff *= fone >> (30 + 16);
488  } else if (flags & SWS_GAUSS) {
489  double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
490  coeff = exp2(-p * floatd * floatd) * fone;
491  } else if (flags & SWS_SINC) {
492  coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
493  } else if (flags & SWS_LANCZOS) {
494  double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
495  coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
496  (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
497  if (floatd > p)
498  coeff = 0;
499  } else if (flags & SWS_BILINEAR) {
500  coeff = (1 << 30) - d;
501  if (coeff < 0)
502  coeff = 0;
503  coeff *= fone >> 30;
504  } else if (flags & SWS_SPLINE) {
505  double p = -2.196152422706632;
506  coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
507  } else {
508  av_assert0(0);
509  }
510 
511  filter[i * filterSize + j] = coeff;
512  xx++;
513  }
514  xDstInSrc += 2LL * xInc;
515  }
516  }
517 
518  /* apply src & dst Filter to filter -> filter2
519  * av_free(filter);
520  */
521  av_assert0(filterSize > 0);
522  filter2Size = filterSize;
523  if (srcFilter)
524  filter2Size += srcFilter->length - 1;
525  if (dstFilter)
526  filter2Size += dstFilter->length - 1;
527  av_assert0(filter2Size > 0);
528  FF_ALLOCZ_ARRAY_OR_GOTO(NULL, filter2, dstW, filter2Size * sizeof(*filter2), fail);
529 
530  for (i = 0; i < dstW; i++) {
531  int j, k;
532 
533  if (srcFilter) {
534  for (k = 0; k < srcFilter->length; k++) {
535  for (j = 0; j < filterSize; j++)
536  filter2[i * filter2Size + k + j] +=
537  srcFilter->coeff[k] * filter[i * filterSize + j];
538  }
539  } else {
540  for (j = 0; j < filterSize; j++)
541  filter2[i * filter2Size + j] = filter[i * filterSize + j];
542  }
543  // FIXME dstFilter
544 
545  (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
546  }
547  av_freep(&filter);
548 
549  /* try to reduce the filter-size (step1 find size and shift left) */
550  // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
551  minFilterSize = 0;
552  for (i = dstW - 1; i >= 0; i--) {
553  int min = filter2Size;
554  int j;
555  int64_t cutOff = 0.0;
556 
557  /* get rid of near zero elements on the left by shifting left */
558  for (j = 0; j < filter2Size; j++) {
559  int k;
560  cutOff += FFABS(filter2[i * filter2Size]);
561 
562  if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
563  break;
564 
565  /* preserve monotonicity because the core can't handle the
566  * filter otherwise */
567  if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
568  break;
569 
570  // move filter coefficients left
571  for (k = 1; k < filter2Size; k++)
572  filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
573  filter2[i * filter2Size + k - 1] = 0;
574  (*filterPos)[i]++;
575  }
576 
577  cutOff = 0;
578  /* count near zeros on the right */
579  for (j = filter2Size - 1; j > 0; j--) {
580  cutOff += FFABS(filter2[i * filter2Size + j]);
581 
582  if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
583  break;
584  min--;
585  }
586 
587  if (min > minFilterSize)
588  minFilterSize = min;
589  }
590 
591  if (PPC_ALTIVEC(cpu_flags)) {
592  // we can handle the special case 4, so we don't want to go the full 8
593  if (minFilterSize < 5)
594  filterAlign = 4;
595 
596  /* We really don't want to waste our time doing useless computation, so
597  * fall back on the scalar C code for very small filters.
598  * Vectorizing is worth it only if you have a decent-sized vector. */
599  if (minFilterSize < 3)
600  filterAlign = 1;
601  }
602 
603  if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) {
604  // special case for unscaled vertical filtering
605  if (minFilterSize == 1 && filterAlign == 2)
606  filterAlign = 1;
607  }
608 
609  av_assert0(minFilterSize > 0);
610  filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
611  av_assert0(filterSize > 0);
612  filter = av_malloc_array(dstW, filterSize * sizeof(*filter));
613  if (!filter)
614  goto fail;
615  if (filterSize >= MAX_FILTER_SIZE * 16 /
616  ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16)) {
617  ret = RETCODE_USE_CASCADE;
618  goto fail;
619  }
620  *outFilterSize = filterSize;
621 
622  if (flags & SWS_PRINT_INFO)
624  "SwScaler: reducing / aligning filtersize %d -> %d\n",
625  filter2Size, filterSize);
626  /* try to reduce the filter-size (step2 reduce it) */
627  for (i = 0; i < dstW; i++) {
628  int j;
629 
630  for (j = 0; j < filterSize; j++) {
631  if (j >= filter2Size)
632  filter[i * filterSize + j] = 0;
633  else
634  filter[i * filterSize + j] = filter2[i * filter2Size + j];
635  if ((flags & SWS_BITEXACT) && j >= minFilterSize)
636  filter[i * filterSize + j] = 0;
637  }
638  }
639 
640  // FIXME try to align filterPos if possible
641 
642  // fix borders
643  for (i = 0; i < dstW; i++) {
644  int j;
645  if ((*filterPos)[i] < 0) {
646  // move filter coefficients left to compensate for filterPos
647  for (j = 1; j < filterSize; j++) {
648  int left = FFMAX(j + (*filterPos)[i], 0);
649  filter[i * filterSize + left] += filter[i * filterSize + j];
650  filter[i * filterSize + j] = 0;
651  }
652  (*filterPos)[i]= 0;
653  }
654 
655  if ((*filterPos)[i] + filterSize > srcW) {
656  int shift = (*filterPos)[i] + FFMIN(filterSize - srcW, 0);
657  int64_t acc = 0;
658 
659  for (j = filterSize - 1; j >= 0; j--) {
660  if ((*filterPos)[i] + j >= srcW) {
661  acc += filter[i * filterSize + j];
662  filter[i * filterSize + j] = 0;
663  }
664  }
665  for (j = filterSize - 1; j >= 0; j--) {
666  if (j < shift) {
667  filter[i * filterSize + j] = 0;
668  } else {
669  filter[i * filterSize + j] = filter[i * filterSize + j - shift];
670  }
671  }
672 
673  (*filterPos)[i]-= shift;
674  filter[i * filterSize + srcW - 1 - (*filterPos)[i]] += acc;
675  }
676  av_assert0((*filterPos)[i] >= 0);
677  av_assert0((*filterPos)[i] < srcW);
678  if ((*filterPos)[i] + filterSize > srcW) {
679  for (j = 0; j < filterSize; j++) {
680  av_assert0((*filterPos)[i] + j < srcW || !filter[i * filterSize + j]);
681  }
682  }
683  }
684 
685  // Note the +1 is for the MMX scaler which reads over the end
686  /* align at 16 for AltiVec (needed by hScale_altivec_real) */
687  FF_ALLOCZ_ARRAY_OR_GOTO(NULL, *outFilter,
688  (dstW + 3), *outFilterSize * sizeof(int16_t), fail);
689 
690  /* normalize & store in outFilter */
691  for (i = 0; i < dstW; i++) {
692  int j;
693  int64_t error = 0;
694  int64_t sum = 0;
695 
696  for (j = 0; j < filterSize; j++) {
697  sum += filter[i * filterSize + j];
698  }
699  sum = (sum + one / 2) / one;
700  if (!sum) {
701  av_log(NULL, AV_LOG_WARNING, "SwScaler: zero vector in scaling\n");
702  sum = 1;
703  }
704  for (j = 0; j < *outFilterSize; j++) {
705  int64_t v = filter[i * filterSize + j] + error;
706  int intV = ROUNDED_DIV(v, sum);
707  (*outFilter)[i * (*outFilterSize) + j] = intV;
708  error = v - intV * sum;
709  }
710  }
711 
712  (*filterPos)[dstW + 0] =
713  (*filterPos)[dstW + 1] =
714  (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
715  * read over the end */
716  for (i = 0; i < *outFilterSize; i++) {
717  int k = (dstW - 1) * (*outFilterSize) + i;
718  (*outFilter)[k + 1 * (*outFilterSize)] =
719  (*outFilter)[k + 2 * (*outFilterSize)] =
720  (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
721  }
722 
723  ret = 0;
724 
725 fail:
726  if(ret < 0)
727  av_log(NULL, ret == RETCODE_USE_CASCADE ? AV_LOG_DEBUG : AV_LOG_ERROR, "sws: initFilter failed\n");
728  av_free(filter);
729  av_free(filter2);
730  return ret;
731 }
732 
733 static void fill_rgb2yuv_table(SwsContext *c, const int table[4], int dstRange)
734 {
735  int64_t W, V, Z, Cy, Cu, Cv;
736  int64_t vr = table[0];
737  int64_t ub = table[1];
738  int64_t ug = -table[2];
739  int64_t vg = -table[3];
740  int64_t ONE = 65536;
741  int64_t cy = ONE;
743  int i;
744  static const int8_t map[] = {
745  BY_IDX, GY_IDX, -1 , BY_IDX, BY_IDX, GY_IDX, -1 , BY_IDX,
746  RY_IDX, -1 , GY_IDX, RY_IDX, RY_IDX, -1 , GY_IDX, RY_IDX,
747  RY_IDX, GY_IDX, -1 , RY_IDX, RY_IDX, GY_IDX, -1 , RY_IDX,
748  BY_IDX, -1 , GY_IDX, BY_IDX, BY_IDX, -1 , GY_IDX, BY_IDX,
749  BU_IDX, GU_IDX, -1 , BU_IDX, BU_IDX, GU_IDX, -1 , BU_IDX,
750  RU_IDX, -1 , GU_IDX, RU_IDX, RU_IDX, -1 , GU_IDX, RU_IDX,
751  RU_IDX, GU_IDX, -1 , RU_IDX, RU_IDX, GU_IDX, -1 , RU_IDX,
752  BU_IDX, -1 , GU_IDX, BU_IDX, BU_IDX, -1 , GU_IDX, BU_IDX,
753  BV_IDX, GV_IDX, -1 , BV_IDX, BV_IDX, GV_IDX, -1 , BV_IDX,
754  RV_IDX, -1 , GV_IDX, RV_IDX, RV_IDX, -1 , GV_IDX, RV_IDX,
755  RV_IDX, GV_IDX, -1 , RV_IDX, RV_IDX, GV_IDX, -1 , RV_IDX,
756  BV_IDX, -1 , GV_IDX, BV_IDX, BV_IDX, -1 , GV_IDX, BV_IDX,
759  GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 ,
760  -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX,
763  GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 ,
764  -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX,
767  GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 ,
768  -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, //23
769  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //24
770  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //25
771  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //26
772  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //27
773  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //28
774  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //29
775  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //30
776  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //31
777  BY_IDX, GY_IDX, RY_IDX, -1 , -1 , -1 , -1 , -1 , //32
778  BU_IDX, GU_IDX, RU_IDX, -1 , -1 , -1 , -1 , -1 , //33
779  BV_IDX, GV_IDX, RV_IDX, -1 , -1 , -1 , -1 , -1 , //34
780  };
781 
782  dstRange = 0; //FIXME range = 1 is handled elsewhere
783 
784  if (!dstRange) {
785  cy = cy * 255 / 219;
786  } else {
787  vr = vr * 224 / 255;
788  ub = ub * 224 / 255;
789  ug = ug * 224 / 255;
790  vg = vg * 224 / 255;
791  }
792  W = ROUNDED_DIV(ONE*ONE*ug, ub);
793  V = ROUNDED_DIV(ONE*ONE*vg, vr);
794  Z = ONE*ONE-W-V;
795 
796  Cy = ROUNDED_DIV(cy*Z, ONE);
797  Cu = ROUNDED_DIV(ub*Z, ONE);
798  Cv = ROUNDED_DIV(vr*Z, ONE);
799 
800  c->input_rgb2yuv_table[RY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cy);
801  c->input_rgb2yuv_table[GY_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cy);
802  c->input_rgb2yuv_table[BY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cy);
803 
804  c->input_rgb2yuv_table[RU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cu);
805  c->input_rgb2yuv_table[GU_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cu);
806  c->input_rgb2yuv_table[BU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(Z+W) , Cu);
807 
808  c->input_rgb2yuv_table[RV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(V+Z) , Cv);
809  c->input_rgb2yuv_table[GV_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cv);
810  c->input_rgb2yuv_table[BV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cv);
811 
812  if(/*!dstRange && */!memcmp(table, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], sizeof(ff_yuv2rgb_coeffs[SWS_CS_DEFAULT]))) {
813  c->input_rgb2yuv_table[BY_IDX] = ((int)(0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
814  c->input_rgb2yuv_table[BV_IDX] = (-(int)(0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
815  c->input_rgb2yuv_table[BU_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
816  c->input_rgb2yuv_table[GY_IDX] = ((int)(0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
817  c->input_rgb2yuv_table[GV_IDX] = (-(int)(0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
818  c->input_rgb2yuv_table[GU_IDX] = (-(int)(0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
819  c->input_rgb2yuv_table[RY_IDX] = ((int)(0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
820  c->input_rgb2yuv_table[RV_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
821  c->input_rgb2yuv_table[RU_IDX] = (-(int)(0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
822  }
823  for(i=0; i<FF_ARRAY_ELEMS(map); i++)
824  AV_WL16(p + 16*4 + 2*i, map[i] >= 0 ? c->input_rgb2yuv_table[map[i]] : 0);
825 }
826 
827 static void fill_xyztables(struct SwsContext *c)
828 {
829  int i;
830  double xyzgamma = XYZ_GAMMA;
831  double rgbgamma = 1.0 / RGB_GAMMA;
832  double xyzgammainv = 1.0 / XYZ_GAMMA;
833  double rgbgammainv = RGB_GAMMA;
834  static const int16_t xyz2rgb_matrix[3][4] = {
835  {13270, -6295, -2041},
836  {-3969, 7682, 170},
837  { 228, -835, 4329} };
838  static const int16_t rgb2xyz_matrix[3][4] = {
839  {1689, 1464, 739},
840  { 871, 2929, 296},
841  { 79, 488, 3891} };
842  static int16_t xyzgamma_tab[4096], rgbgamma_tab[4096], xyzgammainv_tab[4096], rgbgammainv_tab[4096];
843 
844  memcpy(c->xyz2rgb_matrix, xyz2rgb_matrix, sizeof(c->xyz2rgb_matrix));
845  memcpy(c->rgb2xyz_matrix, rgb2xyz_matrix, sizeof(c->rgb2xyz_matrix));
846  c->xyzgamma = xyzgamma_tab;
847  c->rgbgamma = rgbgamma_tab;
848  c->xyzgammainv = xyzgammainv_tab;
849  c->rgbgammainv = rgbgammainv_tab;
850 
851  if (rgbgamma_tab[4095])
852  return;
853 
854  /* set gamma vectors */
855  for (i = 0; i < 4096; i++) {
856  xyzgamma_tab[i] = lrint(pow(i / 4095.0, xyzgamma) * 4095.0);
857  rgbgamma_tab[i] = lrint(pow(i / 4095.0, rgbgamma) * 4095.0);
858  xyzgammainv_tab[i] = lrint(pow(i / 4095.0, xyzgammainv) * 4095.0);
859  rgbgammainv_tab[i] = lrint(pow(i / 4095.0, rgbgammainv) * 4095.0);
860  }
861 }
862 
863 int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
864  int srcRange, const int table[4], int dstRange,
865  int brightness, int contrast, int saturation)
866 {
867  const AVPixFmtDescriptor *desc_dst;
868  const AVPixFmtDescriptor *desc_src;
869  int need_reinit = 0;
870 
871  handle_formats(c);
872  desc_dst = av_pix_fmt_desc_get(c->dstFormat);
873  desc_src = av_pix_fmt_desc_get(c->srcFormat);
874 
875  if(!isYUV(c->dstFormat) && !isGray(c->dstFormat))
876  dstRange = 0;
877  if(!isYUV(c->srcFormat) && !isGray(c->srcFormat))
878  srcRange = 0;
879 
880  if (c->srcRange != srcRange ||
881  c->dstRange != dstRange ||
882  c->brightness != brightness ||
883  c->contrast != contrast ||
884  c->saturation != saturation ||
885  memcmp(c->srcColorspaceTable, inv_table, sizeof(int) * 4) ||
886  memcmp(c->dstColorspaceTable, table, sizeof(int) * 4)
887  )
888  need_reinit = 1;
889 
890  memmove(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
891  memmove(c->dstColorspaceTable, table, sizeof(int) * 4);
892 
893 
894 
895  c->brightness = brightness;
896  c->contrast = contrast;
897  c->saturation = saturation;
898  c->srcRange = srcRange;
899  c->dstRange = dstRange;
900 
901  //The srcBpc check is possibly wrong but we seem to lack a definitive reference to test this
902  //and what we have in ticket 2939 looks better with this check
903  if (need_reinit && (c->srcBpc == 8 || !isYUV(c->srcFormat)))
905 
906  c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
907  c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
908 
910  return sws_setColorspaceDetails(c->cascaded_context[c->cascaded_mainindex],inv_table, srcRange,table, dstRange, brightness, contrast, saturation);
911 
912  if (!need_reinit)
913  return 0;
914 
915  if ((isYUV(c->dstFormat) || isGray(c->dstFormat)) && (isYUV(c->srcFormat) || isGray(c->srcFormat))) {
916  if (!c->cascaded_context[0] &&
917  memcmp(c->dstColorspaceTable, c->srcColorspaceTable, sizeof(int) * 4) &&
918  c->srcW && c->srcH && c->dstW && c->dstH) {
919  enum AVPixelFormat tmp_format;
920  int tmp_width, tmp_height;
921  int srcW = c->srcW;
922  int srcH = c->srcH;
923  int dstW = c->dstW;
924  int dstH = c->dstH;
925  int ret;
926  av_log(c, AV_LOG_VERBOSE, "YUV color matrix differs for YUV->YUV, using intermediate RGB to convert\n");
927 
928  if (isNBPS(c->dstFormat) || is16BPS(c->dstFormat)) {
929  if (isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) {
930  tmp_format = AV_PIX_FMT_BGRA64;
931  } else {
932  tmp_format = AV_PIX_FMT_BGR48;
933  }
934  } else {
935  if (isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) {
936  tmp_format = AV_PIX_FMT_BGRA;
937  } else {
938  tmp_format = AV_PIX_FMT_BGR24;
939  }
940  }
941 
942  if (srcW*srcH > dstW*dstH) {
943  tmp_width = dstW;
944  tmp_height = dstH;
945  } else {
946  tmp_width = srcW;
947  tmp_height = srcH;
948  }
949 
951  tmp_width, tmp_height, tmp_format, 64);
952  if (ret < 0)
953  return ret;
954 
955  c->cascaded_context[0] = sws_alloc_set_opts(srcW, srcH, c->srcFormat,
956  tmp_width, tmp_height, tmp_format,
957  c->flags, c->param);
958  if (!c->cascaded_context[0])
959  return -1;
960 
962  ret = sws_init_context(c->cascaded_context[0], NULL , NULL);
963  if (ret < 0)
964  return ret;
965  //we set both src and dst depending on that the RGB side will be ignored
967  srcRange, table, dstRange,
968  brightness, contrast, saturation);
969 
970  c->cascaded_context[1] = sws_getContext(tmp_width, tmp_height, tmp_format,
971  dstW, dstH, c->dstFormat,
972  c->flags, NULL, NULL, c->param);
973  if (!c->cascaded_context[1])
974  return -1;
976  srcRange, table, dstRange,
977  0, 1 << 16, 1 << 16);
978  return 0;
979  }
980  return -1;
981  }
982 
983  if (!isYUV(c->dstFormat) && !isGray(c->dstFormat)) {
984  ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
985  contrast, saturation);
986  // FIXME factorize
987 
988  if (ARCH_PPC)
989  ff_yuv2rgb_init_tables_ppc(c, inv_table, brightness,
990  contrast, saturation);
991  }
992 
993  fill_rgb2yuv_table(c, table, dstRange);
994 
995  return 0;
996 }
997 
998 int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
999  int *srcRange, int **table, int *dstRange,
1000  int *brightness, int *contrast, int *saturation)
1001 {
1002  if (!c )
1003  return -1;
1004 
1005  *inv_table = c->srcColorspaceTable;
1006  *table = c->dstColorspaceTable;
1007  *srcRange = c->srcRange;
1008  *dstRange = c->dstRange;
1009  *brightness = c->brightness;
1010  *contrast = c->contrast;
1011  *saturation = c->saturation;
1012 
1013  return 0;
1014 }
1015 
1017 {
1018  switch (*format) {
1019  case AV_PIX_FMT_YUVJ420P:
1020  *format = AV_PIX_FMT_YUV420P;
1021  return 1;
1022  case AV_PIX_FMT_YUVJ411P:
1023  *format = AV_PIX_FMT_YUV411P;
1024  return 1;
1025  case AV_PIX_FMT_YUVJ422P:
1026  *format = AV_PIX_FMT_YUV422P;
1027  return 1;
1028  case AV_PIX_FMT_YUVJ444P:
1029  *format = AV_PIX_FMT_YUV444P;
1030  return 1;
1031  case AV_PIX_FMT_YUVJ440P:
1032  *format = AV_PIX_FMT_YUV440P;
1033  return 1;
1034  case AV_PIX_FMT_GRAY8:
1035  case AV_PIX_FMT_YA8:
1036  case AV_PIX_FMT_GRAY9LE:
1037  case AV_PIX_FMT_GRAY9BE:
1038  case AV_PIX_FMT_GRAY10LE:
1039  case AV_PIX_FMT_GRAY10BE:
1040  case AV_PIX_FMT_GRAY12LE:
1041  case AV_PIX_FMT_GRAY12BE:
1042  case AV_PIX_FMT_GRAY14LE:
1043  case AV_PIX_FMT_GRAY14BE:
1044  case AV_PIX_FMT_GRAY16LE:
1045  case AV_PIX_FMT_GRAY16BE:
1046  case AV_PIX_FMT_YA16BE:
1047  case AV_PIX_FMT_YA16LE:
1048  return 1;
1049  default:
1050  return 0;
1051  }
1052 }
1053 
1055 {
1056  switch (*format) {
1057  case AV_PIX_FMT_0BGR : *format = AV_PIX_FMT_ABGR ; return 1;
1058  case AV_PIX_FMT_BGR0 : *format = AV_PIX_FMT_BGRA ; return 4;
1059  case AV_PIX_FMT_0RGB : *format = AV_PIX_FMT_ARGB ; return 1;
1060  case AV_PIX_FMT_RGB0 : *format = AV_PIX_FMT_RGBA ; return 4;
1061  default: return 0;
1062  }
1063 }
1064 
1066 {
1067  switch (*format) {
1068  case AV_PIX_FMT_XYZ12BE : *format = AV_PIX_FMT_RGB48BE; return 1;
1069  case AV_PIX_FMT_XYZ12LE : *format = AV_PIX_FMT_RGB48LE; return 1;
1070  default: return 0;
1071  }
1072 }
1073 
1075 {
1076  c->src0Alpha |= handle_0alpha(&c->srcFormat);
1077  c->dst0Alpha |= handle_0alpha(&c->dstFormat);
1078  c->srcXYZ |= handle_xyz(&c->srcFormat);
1079  c->dstXYZ |= handle_xyz(&c->dstFormat);
1080  if (c->srcXYZ || c->dstXYZ)
1081  fill_xyztables(c);
1082 }
1083 
1085 {
1086  SwsContext *c = av_mallocz(sizeof(SwsContext));
1087 
1088  av_assert0(offsetof(SwsContext, redDither) + DITHER32_INT == offsetof(SwsContext, dither32));
1089 
1090  if (c) {
1093  }
1094 
1095  return c;
1096 }
1097 
1098 static uint16_t * alloc_gamma_tbl(double e)
1099 {
1100  int i = 0;
1101  uint16_t * tbl;
1102  tbl = (uint16_t*)av_malloc(sizeof(uint16_t) * 1 << 16);
1103  if (!tbl)
1104  return NULL;
1105 
1106  for (i = 0; i < 65536; ++i) {
1107  tbl[i] = pow(i / 65535.0, e) * 65535.0;
1108  }
1109  return tbl;
1110 }
1111 
1113 {
1114  switch(fmt) {
1115  case AV_PIX_FMT_ARGB: return AV_PIX_FMT_RGB24;
1116  case AV_PIX_FMT_RGBA: return AV_PIX_FMT_RGB24;
1117  case AV_PIX_FMT_ABGR: return AV_PIX_FMT_BGR24;
1118  case AV_PIX_FMT_BGRA: return AV_PIX_FMT_BGR24;
1119  case AV_PIX_FMT_YA8: return AV_PIX_FMT_GRAY8;
1120 
1124 
1125  case AV_PIX_FMT_GBRAP: return AV_PIX_FMT_GBRP;
1126 
1129 
1132 
1135 
1140 
1141  case AV_PIX_FMT_YA16BE: return AV_PIX_FMT_GRAY16;
1142  case AV_PIX_FMT_YA16LE: return AV_PIX_FMT_GRAY16;
1143 
1162 
1163 // case AV_PIX_FMT_AYUV64LE:
1164 // case AV_PIX_FMT_AYUV64BE:
1165 // case AV_PIX_FMT_PAL8:
1166  default: return AV_PIX_FMT_NONE;
1167  }
1168 }
1169 
1171  SwsFilter *dstFilter)
1172 {
1173  int i;
1174  int usesVFilter, usesHFilter;
1175  int unscaled;
1176  SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
1177  int srcW = c->srcW;
1178  int srcH = c->srcH;
1179  int dstW = c->dstW;
1180  int dstH = c->dstH;
1181  int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 66, 16);
1182  int flags, cpu_flags;
1183  enum AVPixelFormat srcFormat = c->srcFormat;
1184  enum AVPixelFormat dstFormat = c->dstFormat;
1185  const AVPixFmtDescriptor *desc_src;
1186  const AVPixFmtDescriptor *desc_dst;
1187  int ret = 0;
1188  enum AVPixelFormat tmpFmt;
1189  static const float float_mult = 1.0f / 255.0f;
1190 
1191  cpu_flags = av_get_cpu_flags();
1192  flags = c->flags;
1193  emms_c();
1194  if (!rgb15to16)
1196 
1197  unscaled = (srcW == dstW && srcH == dstH);
1198 
1199  c->srcRange |= handle_jpeg(&c->srcFormat);
1200  c->dstRange |= handle_jpeg(&c->dstFormat);
1201 
1202  if(srcFormat!=c->srcFormat || dstFormat!=c->dstFormat)
1203  av_log(c, AV_LOG_WARNING, "deprecated pixel format used, make sure you did set range correctly\n");
1204 
1205  if (!c->contrast && !c->saturation && !c->dstFormatBpp)
1206  sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange,
1207  ff_yuv2rgb_coeffs[SWS_CS_DEFAULT],
1208  c->dstRange, 0, 1 << 16, 1 << 16);
1209 
1210  handle_formats(c);
1211  srcFormat = c->srcFormat;
1212  dstFormat = c->dstFormat;
1213  desc_src = av_pix_fmt_desc_get(srcFormat);
1214  desc_dst = av_pix_fmt_desc_get(dstFormat);
1215 
1216  // If the source has no alpha then disable alpha blendaway
1217  if (c->src0Alpha)
1219 
1220  if (!(unscaled && sws_isSupportedEndiannessConversion(srcFormat) &&
1221  av_pix_fmt_swap_endianness(srcFormat) == dstFormat)) {
1222  if (!sws_isSupportedInput(srcFormat)) {
1223  av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
1224  av_get_pix_fmt_name(srcFormat));
1225  return AVERROR(EINVAL);
1226  }
1227  if (!sws_isSupportedOutput(dstFormat)) {
1228  av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
1229  av_get_pix_fmt_name(dstFormat));
1230  return AVERROR(EINVAL);
1231  }
1232  }
1233  av_assert2(desc_src && desc_dst);
1234 
1235  i = flags & (SWS_POINT |
1236  SWS_AREA |
1237  SWS_BILINEAR |
1239  SWS_BICUBIC |
1240  SWS_X |
1241  SWS_GAUSS |
1242  SWS_LANCZOS |
1243  SWS_SINC |
1244  SWS_SPLINE |
1245  SWS_BICUBLIN);
1246 
1247  /* provide a default scaler if not set by caller */
1248  if (!i) {
1249  if (dstW < srcW && dstH < srcH)
1250  flags |= SWS_BICUBIC;
1251  else if (dstW > srcW && dstH > srcH)
1252  flags |= SWS_BICUBIC;
1253  else
1254  flags |= SWS_BICUBIC;
1255  c->flags = flags;
1256  } else if (i & (i - 1)) {
1257  av_log(c, AV_LOG_ERROR,
1258  "Exactly one scaler algorithm must be chosen, got %X\n", i);
1259  return AVERROR(EINVAL);
1260  }
1261  /* sanity check */
1262  if (srcW < 1 || srcH < 1 || dstW < 1 || dstH < 1) {
1263  /* FIXME check if these are enough and try to lower them after
1264  * fixing the relevant parts of the code */
1265  av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
1266  srcW, srcH, dstW, dstH);
1267  return AVERROR(EINVAL);
1268  }
1269  if (flags & SWS_FAST_BILINEAR) {
1270  if (srcW < 8 || dstW < 8) {
1271  flags ^= SWS_FAST_BILINEAR | SWS_BILINEAR;
1272  c->flags = flags;
1273  }
1274  }
1275 
1276  if (!dstFilter)
1277  dstFilter = &dummyFilter;
1278  if (!srcFilter)
1279  srcFilter = &dummyFilter;
1280 
1281  c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
1282  c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
1283  c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
1284  c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
1285  c->vRounder = 4 * 0x0001000100010001ULL;
1286 
1287  usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
1288  (srcFilter->chrV && srcFilter->chrV->length > 1) ||
1289  (dstFilter->lumV && dstFilter->lumV->length > 1) ||
1290  (dstFilter->chrV && dstFilter->chrV->length > 1);
1291  usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
1292  (srcFilter->chrH && srcFilter->chrH->length > 1) ||
1293  (dstFilter->lumH && dstFilter->lumH->length > 1) ||
1294  (dstFilter->chrH && dstFilter->chrH->length > 1);
1295 
1298 
1299  if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) {
1300  if (dstW&1) {
1301  av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to odd output size\n");
1302  flags |= SWS_FULL_CHR_H_INT;
1303  c->flags = flags;
1304  }
1305 
1306  if ( c->chrSrcHSubSample == 0
1307  && c->chrSrcVSubSample == 0
1308  && c->dither != SWS_DITHER_BAYER //SWS_FULL_CHR_H_INT is currently not supported with SWS_DITHER_BAYER
1309  && !(c->flags & SWS_FAST_BILINEAR)
1310  ) {
1311  av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to input having non subsampled chroma\n");
1312  flags |= SWS_FULL_CHR_H_INT;
1313  c->flags = flags;
1314  }
1315  }
1316 
1317  if (c->dither == SWS_DITHER_AUTO) {
1318  if (flags & SWS_ERROR_DIFFUSION)
1319  c->dither = SWS_DITHER_ED;
1320  }
1321 
1322  if(dstFormat == AV_PIX_FMT_BGR4_BYTE ||
1323  dstFormat == AV_PIX_FMT_RGB4_BYTE ||
1324  dstFormat == AV_PIX_FMT_BGR8 ||
1325  dstFormat == AV_PIX_FMT_RGB8) {
1326  if (c->dither == SWS_DITHER_AUTO)
1328  if (!(flags & SWS_FULL_CHR_H_INT)) {
1330  av_log(c, AV_LOG_DEBUG,
1331  "Desired dithering only supported in full chroma interpolation for destination format '%s'\n",
1332  av_get_pix_fmt_name(dstFormat));
1333  flags |= SWS_FULL_CHR_H_INT;
1334  c->flags = flags;
1335  }
1336  }
1337  if (flags & SWS_FULL_CHR_H_INT) {
1338  if (c->dither == SWS_DITHER_BAYER) {
1339  av_log(c, AV_LOG_DEBUG,
1340  "Ordered dither is not supported in full chroma interpolation for destination format '%s'\n",
1341  av_get_pix_fmt_name(dstFormat));
1342  c->dither = SWS_DITHER_ED;
1343  }
1344  }
1345  }
1346  if (isPlanarRGB(dstFormat)) {
1347  if (!(flags & SWS_FULL_CHR_H_INT)) {
1348  av_log(c, AV_LOG_DEBUG,
1349  "%s output is not supported with half chroma resolution, switching to full\n",
1350  av_get_pix_fmt_name(dstFormat));
1351  flags |= SWS_FULL_CHR_H_INT;
1352  c->flags = flags;
1353  }
1354  }
1355 
1356  /* reuse chroma for 2 pixels RGB/BGR unless user wants full
1357  * chroma interpolation */
1358  if (flags & SWS_FULL_CHR_H_INT &&
1359  isAnyRGB(dstFormat) &&
1360  !isPlanarRGB(dstFormat) &&
1361  dstFormat != AV_PIX_FMT_RGBA64LE &&
1362  dstFormat != AV_PIX_FMT_RGBA64BE &&
1363  dstFormat != AV_PIX_FMT_BGRA64LE &&
1364  dstFormat != AV_PIX_FMT_BGRA64BE &&
1365  dstFormat != AV_PIX_FMT_RGB48LE &&
1366  dstFormat != AV_PIX_FMT_RGB48BE &&
1367  dstFormat != AV_PIX_FMT_BGR48LE &&
1368  dstFormat != AV_PIX_FMT_BGR48BE &&
1369  dstFormat != AV_PIX_FMT_RGBA &&
1370  dstFormat != AV_PIX_FMT_ARGB &&
1371  dstFormat != AV_PIX_FMT_BGRA &&
1372  dstFormat != AV_PIX_FMT_ABGR &&
1373  dstFormat != AV_PIX_FMT_RGB24 &&
1374  dstFormat != AV_PIX_FMT_BGR24 &&
1375  dstFormat != AV_PIX_FMT_BGR4_BYTE &&
1376  dstFormat != AV_PIX_FMT_RGB4_BYTE &&
1377  dstFormat != AV_PIX_FMT_BGR8 &&
1378  dstFormat != AV_PIX_FMT_RGB8
1379  ) {
1381  "full chroma interpolation for destination format '%s' not yet implemented\n",
1382  av_get_pix_fmt_name(dstFormat));
1383  flags &= ~SWS_FULL_CHR_H_INT;
1384  c->flags = flags;
1385  }
1386  if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
1387  c->chrDstHSubSample = 1;
1388 
1389  // drop some chroma lines if the user wants it
1390  c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
1392  c->chrSrcVSubSample += c->vChrDrop;
1393 
1394  /* drop every other pixel for chroma calculation unless user
1395  * wants full chroma */
1396  if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
1397  srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
1398  srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
1399  srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
1400  srcFormat != AV_PIX_FMT_GBRP9BE && srcFormat != AV_PIX_FMT_GBRP9LE &&
1401  srcFormat != AV_PIX_FMT_GBRP10BE && srcFormat != AV_PIX_FMT_GBRP10LE &&
1402  srcFormat != AV_PIX_FMT_GBRAP10BE && srcFormat != AV_PIX_FMT_GBRAP10LE &&
1403  srcFormat != AV_PIX_FMT_GBRP12BE && srcFormat != AV_PIX_FMT_GBRP12LE &&
1404  srcFormat != AV_PIX_FMT_GBRAP12BE && srcFormat != AV_PIX_FMT_GBRAP12LE &&
1405  srcFormat != AV_PIX_FMT_GBRP14BE && srcFormat != AV_PIX_FMT_GBRP14LE &&
1406  srcFormat != AV_PIX_FMT_GBRP16BE && srcFormat != AV_PIX_FMT_GBRP16LE &&
1407  srcFormat != AV_PIX_FMT_GBRAP16BE && srcFormat != AV_PIX_FMT_GBRAP16LE &&
1408  srcFormat != AV_PIX_FMT_GBRPF32BE && srcFormat != AV_PIX_FMT_GBRPF32LE &&
1409  srcFormat != AV_PIX_FMT_GBRAPF32BE && srcFormat != AV_PIX_FMT_GBRAPF32LE &&
1410  ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
1411  (flags & SWS_FAST_BILINEAR)))
1412  c->chrSrcHSubSample = 1;
1413 
1414  // Note the AV_CEIL_RSHIFT is so that we always round toward +inf.
1415  c->chrSrcW = AV_CEIL_RSHIFT(srcW, c->chrSrcHSubSample);
1416  c->chrSrcH = AV_CEIL_RSHIFT(srcH, c->chrSrcVSubSample);
1417  c->chrDstW = AV_CEIL_RSHIFT(dstW, c->chrDstHSubSample);
1418  c->chrDstH = AV_CEIL_RSHIFT(dstH, c->chrDstVSubSample);
1419 
1420  FF_ALLOCZ_OR_GOTO(c, c->formatConvBuffer, FFALIGN(srcW*2+78, 16) * 2, fail);
1421 
1422  c->srcBpc = desc_src->comp[0].depth;
1423  if (c->srcBpc < 8)
1424  c->srcBpc = 8;
1425  c->dstBpc = desc_dst->comp[0].depth;
1426  if (c->dstBpc < 8)
1427  c->dstBpc = 8;
1428  if (isAnyRGB(srcFormat) || srcFormat == AV_PIX_FMT_PAL8)
1429  c->srcBpc = 16;
1430  if (c->dstBpc == 16)
1431  dst_stride <<= 1;
1432 
1433  if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 14) {
1434  c->canMMXEXTBeUsed = dstW >= srcW && (dstW & 31) == 0 &&
1435  c->chrDstW >= c->chrSrcW &&
1436  (srcW & 15) == 0;
1437  if (!c->canMMXEXTBeUsed && dstW >= srcW && c->chrDstW >= c->chrSrcW && (srcW & 15) == 0
1438 
1439  && (flags & SWS_FAST_BILINEAR)) {
1440  if (flags & SWS_PRINT_INFO)
1441  av_log(c, AV_LOG_INFO,
1442  "output width is not a multiple of 32 -> no MMXEXT scaler\n");
1443  }
1444  if (usesHFilter || isNBPS(c->srcFormat) || is16BPS(c->srcFormat) || isAnyRGB(c->srcFormat))
1445  c->canMMXEXTBeUsed = 0;
1446  } else
1447  c->canMMXEXTBeUsed = 0;
1448 
1449  c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
1450  c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
1451 
1452  /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
1453  * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
1454  * correct scaling.
1455  * n-2 is the last chrominance sample available.
1456  * This is not perfect, but no one should notice the difference, the more
1457  * correct variant would be like the vertical one, but that would require
1458  * some special code for the first and last pixel */
1459  if (flags & SWS_FAST_BILINEAR) {
1460  if (c->canMMXEXTBeUsed) {
1461  c->lumXInc += 20;
1462  c->chrXInc += 20;
1463  }
1464  // we don't use the x86 asm scaler if MMX is available
1465  else if (INLINE_MMX(cpu_flags) && c->dstBpc <= 14) {
1466  c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
1467  c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
1468  }
1469  }
1470 
1471  // hardcoded for now
1472  c->gamma_value = 2.2;
1473  tmpFmt = AV_PIX_FMT_RGBA64LE;
1474 
1475 
1476  if (!unscaled && c->gamma_flag && (srcFormat != tmpFmt || dstFormat != tmpFmt)) {
1477  SwsContext *c2;
1478  c->cascaded_context[0] = NULL;
1479 
1481  srcW, srcH, tmpFmt, 64);
1482  if (ret < 0)
1483  return ret;
1484 
1485  c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
1486  srcW, srcH, tmpFmt,
1487  flags, NULL, NULL, c->param);
1488  if (!c->cascaded_context[0]) {
1489  return -1;
1490  }
1491 
1492  c->cascaded_context[1] = sws_getContext(srcW, srcH, tmpFmt,
1493  dstW, dstH, tmpFmt,
1494  flags, srcFilter, dstFilter, c->param);
1495 
1496  if (!c->cascaded_context[1])
1497  return -1;
1498 
1499  c2 = c->cascaded_context[1];
1500  c2->is_internal_gamma = 1;
1501  c2->gamma = alloc_gamma_tbl( c->gamma_value);
1502  c2->inv_gamma = alloc_gamma_tbl(1.f/c->gamma_value);
1503  if (!c2->gamma || !c2->inv_gamma)
1504  return AVERROR(ENOMEM);
1505 
1506  // is_internal_flag is set after creating the context
1507  // to properly create the gamma convert FilterDescriptor
1508  // we have to re-initialize it
1509  ff_free_filters(c2);
1510  if (ff_init_filters(c2) < 0) {
1511  sws_freeContext(c2);
1512  c->cascaded_context[1] = NULL;
1513  return -1;
1514  }
1515 
1516  c->cascaded_context[2] = NULL;
1517  if (dstFormat != tmpFmt) {
1519  dstW, dstH, tmpFmt, 64);
1520  if (ret < 0)
1521  return ret;
1522 
1523  c->cascaded_context[2] = sws_getContext(dstW, dstH, tmpFmt,
1524  dstW, dstH, dstFormat,
1525  flags, NULL, NULL, c->param);
1526  if (!c->cascaded_context[2])
1527  return -1;
1528  }
1529  return 0;
1530  }
1531 
1532  if (isBayer(srcFormat)) {
1533  if (!unscaled ||
1534  (dstFormat != AV_PIX_FMT_RGB24 && dstFormat != AV_PIX_FMT_YUV420P)) {
1535  enum AVPixelFormat tmpFormat = AV_PIX_FMT_RGB24;
1536 
1538  srcW, srcH, tmpFormat, 64);
1539  if (ret < 0)
1540  return ret;
1541 
1542  c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
1543  srcW, srcH, tmpFormat,
1544  flags, srcFilter, NULL, c->param);
1545  if (!c->cascaded_context[0])
1546  return -1;
1547 
1548  c->cascaded_context[1] = sws_getContext(srcW, srcH, tmpFormat,
1549  dstW, dstH, dstFormat,
1550  flags, NULL, dstFilter, c->param);
1551  if (!c->cascaded_context[1])
1552  return -1;
1553  return 0;
1554  }
1555  }
1556 
1557  if (unscaled && c->srcBpc == 8 && dstFormat == AV_PIX_FMT_GRAYF32){
1558  for (i = 0; i < 256; ++i){
1559  c->uint2float_lut[i] = (float)i * float_mult;
1560  }
1561  }
1562 
1563  // float will be converted to uint16_t
1564  if ((srcFormat == AV_PIX_FMT_GRAYF32BE || srcFormat == AV_PIX_FMT_GRAYF32LE) &&
1565  (!unscaled || unscaled && dstFormat != srcFormat && (srcFormat != AV_PIX_FMT_GRAYF32 ||
1566  dstFormat != AV_PIX_FMT_GRAY8))){
1567  c->srcBpc = 16;
1568  }
1569 
1570  if (CONFIG_SWSCALE_ALPHA && isALPHA(srcFormat) && !isALPHA(dstFormat)) {
1571  enum AVPixelFormat tmpFormat = alphaless_fmt(srcFormat);
1572 
1573  if (tmpFormat != AV_PIX_FMT_NONE && c->alphablend != SWS_ALPHA_BLEND_NONE)
1574  if (!unscaled ||
1575  dstFormat != tmpFormat ||
1576  usesHFilter || usesVFilter ||
1577  c->srcRange != c->dstRange
1578  ) {
1579  c->cascaded_mainindex = 1;
1581  srcW, srcH, tmpFormat, 64);
1582  if (ret < 0)
1583  return ret;
1584 
1585  c->cascaded_context[0] = sws_alloc_set_opts(srcW, srcH, srcFormat,
1586  srcW, srcH, tmpFormat,
1587  flags, c->param);
1588  if (!c->cascaded_context[0])
1589  return -1;
1591  ret = sws_init_context(c->cascaded_context[0], NULL , NULL);
1592  if (ret < 0)
1593  return ret;
1594 
1595  c->cascaded_context[1] = sws_alloc_set_opts(srcW, srcH, tmpFormat,
1596  dstW, dstH, dstFormat,
1597  flags, c->param);
1598  if (!c->cascaded_context[1])
1599  return -1;
1600 
1601  c->cascaded_context[1]->srcRange = c->srcRange;
1602  c->cascaded_context[1]->dstRange = c->dstRange;
1603  ret = sws_init_context(c->cascaded_context[1], srcFilter , dstFilter);
1604  if (ret < 0)
1605  return ret;
1606 
1607  return 0;
1608  }
1609  }
1610 
1611 #if HAVE_MMAP && HAVE_MPROTECT && defined(MAP_ANONYMOUS)
1612 #define USE_MMAP 1
1613 #else
1614 #define USE_MMAP 0
1615 #endif
1616 
1617  /* precalculate horizontal scaler filter coefficients */
1618  {
1619 #if HAVE_MMXEXT_INLINE
1620 // can't downscale !!!
1621  if (c->canMMXEXTBeUsed && (flags & SWS_FAST_BILINEAR)) {
1623  NULL, NULL, 8);
1625  NULL, NULL, NULL, 4);
1626 
1627 #if USE_MMAP
1628  c->lumMmxextFilterCode = mmap(NULL, c->lumMmxextFilterCodeSize,
1629  PROT_READ | PROT_WRITE,
1630  MAP_PRIVATE | MAP_ANONYMOUS,
1631  -1, 0);
1632  c->chrMmxextFilterCode = mmap(NULL, c->chrMmxextFilterCodeSize,
1633  PROT_READ | PROT_WRITE,
1634  MAP_PRIVATE | MAP_ANONYMOUS,
1635  -1, 0);
1636 #elif HAVE_VIRTUALALLOC
1637  c->lumMmxextFilterCode = VirtualAlloc(NULL,
1639  MEM_COMMIT,
1640  PAGE_EXECUTE_READWRITE);
1641  c->chrMmxextFilterCode = VirtualAlloc(NULL,
1643  MEM_COMMIT,
1644  PAGE_EXECUTE_READWRITE);
1645 #else
1648 #endif
1649 
1650 #ifdef MAP_ANONYMOUS
1651  if (c->lumMmxextFilterCode == MAP_FAILED || c->chrMmxextFilterCode == MAP_FAILED)
1652 #else
1654 #endif
1655  {
1656  av_log(c, AV_LOG_ERROR, "Failed to allocate MMX2FilterCode\n");
1657  return AVERROR(ENOMEM);
1658  }
1659 
1660  FF_ALLOCZ_OR_GOTO(c, c->hLumFilter, (dstW / 8 + 8) * sizeof(int16_t), fail);
1661  FF_ALLOCZ_OR_GOTO(c, c->hChrFilter, (c->chrDstW / 4 + 8) * sizeof(int16_t), fail);
1662  FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW / 2 / 8 + 8) * sizeof(int32_t), fail);
1663  FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW / 2 / 4 + 8) * sizeof(int32_t), fail);
1664 
1666  c->hLumFilter, (uint32_t*)c->hLumFilterPos, 8);
1668  c->hChrFilter, (uint32_t*)c->hChrFilterPos, 4);
1669 
1670 #if USE_MMAP
1671  if ( mprotect(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1
1672  || mprotect(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1) {
1673  av_log(c, AV_LOG_ERROR, "mprotect failed, cannot use fast bilinear scaler\n");
1674  goto fail;
1675  }
1676 #endif
1677  } else
1678 #endif /* HAVE_MMXEXT_INLINE */
1679  {
1680  const int filterAlign = X86_MMX(cpu_flags) ? 4 :
1681  PPC_ALTIVEC(cpu_flags) ? 8 :
1682  have_neon(cpu_flags) ? 8 : 1;
1683 
1684  if ((ret = initFilter(&c->hLumFilter, &c->hLumFilterPos,
1685  &c->hLumFilterSize, c->lumXInc,
1686  srcW, dstW, filterAlign, 1 << 14,
1687  (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
1688  cpu_flags, srcFilter->lumH, dstFilter->lumH,
1689  c->param,
1690  get_local_pos(c, 0, 0, 0),
1691  get_local_pos(c, 0, 0, 0))) < 0)
1692  goto fail;
1693  if ((ret = initFilter(&c->hChrFilter, &c->hChrFilterPos,
1694  &c->hChrFilterSize, c->chrXInc,
1695  c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
1696  (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
1697  cpu_flags, srcFilter->chrH, dstFilter->chrH,
1698  c->param,
1700  get_local_pos(c, c->chrDstHSubSample, c->dst_h_chr_pos, 0))) < 0)
1701  goto fail;
1702  }
1703  } // initialize horizontal stuff
1704 
1705  /* precalculate vertical scaler filter coefficients */
1706  {
1707  const int filterAlign = X86_MMX(cpu_flags) ? 2 :
1708  PPC_ALTIVEC(cpu_flags) ? 8 :
1709  have_neon(cpu_flags) ? 2 : 1;
1710 
1711  if ((ret = initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
1712  c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
1713  (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
1714  cpu_flags, srcFilter->lumV, dstFilter->lumV,
1715  c->param,
1716  get_local_pos(c, 0, 0, 1),
1717  get_local_pos(c, 0, 0, 1))) < 0)
1718  goto fail;
1719  if ((ret = initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
1720  c->chrYInc, c->chrSrcH, c->chrDstH,
1721  filterAlign, (1 << 12),
1722  (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
1723  cpu_flags, srcFilter->chrV, dstFilter->chrV,
1724  c->param,
1726  get_local_pos(c, c->chrDstVSubSample, c->dst_v_chr_pos, 1))) < 0)
1727 
1728  goto fail;
1729 
1730 #if HAVE_ALTIVEC
1731  FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof(vector signed short) * c->vLumFilterSize * c->dstH, fail);
1732  FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof(vector signed short) * c->vChrFilterSize * c->chrDstH, fail);
1733 
1734  for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
1735  int j;
1736  short *p = (short *)&c->vYCoeffsBank[i];
1737  for (j = 0; j < 8; j++)
1738  p[j] = c->vLumFilter[i];
1739  }
1740 
1741  for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
1742  int j;
1743  short *p = (short *)&c->vCCoeffsBank[i];
1744  for (j = 0; j < 8; j++)
1745  p[j] = c->vChrFilter[i];
1746  }
1747 #endif
1748  }
1749 
1750  for (i = 0; i < 4; i++)
1751  FF_ALLOCZ_OR_GOTO(c, c->dither_error[i], (c->dstW+3) * sizeof(int), fail);
1752 
1753  c->needAlpha = (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) ? 1 : 0;
1754 
1755  // 64 / c->scalingBpp is the same as 16 / sizeof(scaling_intermediate)
1756  c->uv_off = (dst_stride>>1) + 64 / (c->dstBpc &~ 7);
1757  c->uv_offx2 = dst_stride + 16;
1758 
1759  av_assert0(c->chrDstH <= dstH);
1760 
1761  if (flags & SWS_PRINT_INFO) {
1762  const char *scaler = NULL, *cpucaps;
1763 
1764  for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
1765  if (flags & scale_algorithms[i].flag) {
1766  scaler = scale_algorithms[i].description;
1767  break;
1768  }
1769  }
1770  if (!scaler)
1771  scaler = "ehh flags invalid?!";
1772  av_log(c, AV_LOG_INFO, "%s scaler, from %s to %s%s ",
1773  scaler,
1774  av_get_pix_fmt_name(srcFormat),
1775 #ifdef DITHER1XBPP
1776  dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
1777  dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
1778  dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
1779  "dithered " : "",
1780 #else
1781  "",
1782 #endif
1783  av_get_pix_fmt_name(dstFormat));
1784 
1785  if (INLINE_MMXEXT(cpu_flags))
1786  cpucaps = "MMXEXT";
1787  else if (INLINE_AMD3DNOW(cpu_flags))
1788  cpucaps = "3DNOW";
1789  else if (INLINE_MMX(cpu_flags))
1790  cpucaps = "MMX";
1791  else if (PPC_ALTIVEC(cpu_flags))
1792  cpucaps = "AltiVec";
1793  else
1794  cpucaps = "C";
1795 
1796  av_log(c, AV_LOG_INFO, "using %s\n", cpucaps);
1797 
1798  av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
1799  av_log(c, AV_LOG_DEBUG,
1800  "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
1801  c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
1802  av_log(c, AV_LOG_DEBUG,
1803  "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
1804  c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
1805  c->chrXInc, c->chrYInc);
1806  }
1807 
1808  /* alpha blend special case, note this has been split via cascaded contexts if its scaled */
1809  if (unscaled && !usesHFilter && !usesVFilter &&
1811  isALPHA(srcFormat) &&
1812  (c->srcRange == c->dstRange || isAnyRGB(dstFormat)) &&
1813  alphaless_fmt(srcFormat) == dstFormat
1814  ) {
1816 
1817  if (flags & SWS_PRINT_INFO)
1818  av_log(c, AV_LOG_INFO,
1819  "using alpha blendaway %s -> %s special converter\n",
1820  av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
1821  return 0;
1822  }
1823 
1824  /* unscaled special cases */
1825  if (unscaled && !usesHFilter && !usesVFilter &&
1826  (c->srcRange == c->dstRange || isAnyRGB(dstFormat) ||
1827  isFloat(srcFormat) || isFloat(dstFormat) || isBayer(srcFormat))){
1829 
1830  if (c->swscale) {
1831  if (flags & SWS_PRINT_INFO)
1832  av_log(c, AV_LOG_INFO,
1833  "using unscaled %s -> %s special converter\n",
1834  av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
1835  return 0;
1836  }
1837  }
1838 
1839  c->swscale = ff_getSwsFunc(c);
1840  return ff_init_filters(c);
1841 fail: // FIXME replace things by appropriate error codes
1842  if (ret == RETCODE_USE_CASCADE) {
1843  int tmpW = sqrt(srcW * (int64_t)dstW);
1844  int tmpH = sqrt(srcH * (int64_t)dstH);
1845  enum AVPixelFormat tmpFormat = AV_PIX_FMT_YUV420P;
1846 
1847  if (isALPHA(srcFormat))
1848  tmpFormat = AV_PIX_FMT_YUVA420P;
1849 
1850  if (srcW*(int64_t)srcH <= 4LL*dstW*dstH)
1851  return AVERROR(EINVAL);
1852 
1854  tmpW, tmpH, tmpFormat, 64);
1855  if (ret < 0)
1856  return ret;
1857 
1858  c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
1859  tmpW, tmpH, tmpFormat,
1860  flags, srcFilter, NULL, c->param);
1861  if (!c->cascaded_context[0])
1862  return -1;
1863 
1864  c->cascaded_context[1] = sws_getContext(tmpW, tmpH, tmpFormat,
1865  dstW, dstH, dstFormat,
1866  flags, NULL, dstFilter, c->param);
1867  if (!c->cascaded_context[1])
1868  return -1;
1869  return 0;
1870  }
1871  return -1;
1872 }
1873 
1874 SwsContext *sws_alloc_set_opts(int srcW, int srcH, enum AVPixelFormat srcFormat,
1875  int dstW, int dstH, enum AVPixelFormat dstFormat,
1876  int flags, const double *param)
1877 {
1878  SwsContext *c;
1879 
1880  if (!(c = sws_alloc_context()))
1881  return NULL;
1882 
1883  c->flags = flags;
1884  c->srcW = srcW;
1885  c->srcH = srcH;
1886  c->dstW = dstW;
1887  c->dstH = dstH;
1888  c->srcFormat = srcFormat;
1889  c->dstFormat = dstFormat;
1890 
1891  if (param) {
1892  c->param[0] = param[0];
1893  c->param[1] = param[1];
1894  }
1895 
1896  return c;
1897 }
1898 
1899 SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
1900  int dstW, int dstH, enum AVPixelFormat dstFormat,
1901  int flags, SwsFilter *srcFilter,
1902  SwsFilter *dstFilter, const double *param)
1903 {
1904  SwsContext *c;
1905 
1906  c = sws_alloc_set_opts(srcW, srcH, srcFormat,
1907  dstW, dstH, dstFormat,
1908  flags, param);
1909  if (!c)
1910  return NULL;
1911 
1912  if (sws_init_context(c, srcFilter, dstFilter) < 0) {
1913  sws_freeContext(c);
1914  return NULL;
1915  }
1916 
1917  return c;
1918 }
1919 
1920 static int isnan_vec(SwsVector *a)
1921 {
1922  int i;
1923  for (i=0; i<a->length; i++)
1924  if (isnan(a->coeff[i]))
1925  return 1;
1926  return 0;
1927 }
1928 
1929 static void makenan_vec(SwsVector *a)
1930 {
1931  int i;
1932  for (i=0; i<a->length; i++)
1933  a->coeff[i] = NAN;
1934 }
1935 
1936 SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
1937  float lumaSharpen, float chromaSharpen,
1938  float chromaHShift, float chromaVShift,
1939  int verbose)
1940 {
1941  SwsFilter *filter = av_malloc(sizeof(SwsFilter));
1942  if (!filter)
1943  return NULL;
1944 
1945  if (lumaGBlur != 0.0) {
1946  filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
1947  filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
1948  } else {
1949  filter->lumH = sws_getIdentityVec();
1950  filter->lumV = sws_getIdentityVec();
1951  }
1952 
1953  if (chromaGBlur != 0.0) {
1954  filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
1955  filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
1956  } else {
1957  filter->chrH = sws_getIdentityVec();
1958  filter->chrV = sws_getIdentityVec();
1959  }
1960 
1961  if (!filter->lumH || !filter->lumV || !filter->chrH || !filter->chrV)
1962  goto fail;
1963 
1964  if (chromaSharpen != 0.0) {
1965  SwsVector *id = sws_getIdentityVec();
1966  if (!id)
1967  goto fail;
1968  sws_scaleVec(filter->chrH, -chromaSharpen);
1969  sws_scaleVec(filter->chrV, -chromaSharpen);
1970  sws_addVec(filter->chrH, id);
1971  sws_addVec(filter->chrV, id);
1972  sws_freeVec(id);
1973  }
1974 
1975  if (lumaSharpen != 0.0) {
1976  SwsVector *id = sws_getIdentityVec();
1977  if (!id)
1978  goto fail;
1979  sws_scaleVec(filter->lumH, -lumaSharpen);
1980  sws_scaleVec(filter->lumV, -lumaSharpen);
1981  sws_addVec(filter->lumH, id);
1982  sws_addVec(filter->lumV, id);
1983  sws_freeVec(id);
1984  }
1985 
1986  if (chromaHShift != 0.0)
1987  sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
1988 
1989  if (chromaVShift != 0.0)
1990  sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
1991 
1992  sws_normalizeVec(filter->chrH, 1.0);
1993  sws_normalizeVec(filter->chrV, 1.0);
1994  sws_normalizeVec(filter->lumH, 1.0);
1995  sws_normalizeVec(filter->lumV, 1.0);
1996 
1997  if (isnan_vec(filter->chrH) ||
1998  isnan_vec(filter->chrV) ||
1999  isnan_vec(filter->lumH) ||
2000  isnan_vec(filter->lumV))
2001  goto fail;
2002 
2003  if (verbose)
2004  sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
2005  if (verbose)
2006  sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
2007 
2008  return filter;
2009 
2010 fail:
2011  sws_freeVec(filter->lumH);
2012  sws_freeVec(filter->lumV);
2013  sws_freeVec(filter->chrH);
2014  sws_freeVec(filter->chrV);
2015  av_freep(&filter);
2016  return NULL;
2017 }
2018 
2020 {
2021  SwsVector *vec;
2022 
2023  if(length <= 0 || length > INT_MAX/ sizeof(double))
2024  return NULL;
2025 
2026  vec = av_malloc(sizeof(SwsVector));
2027  if (!vec)
2028  return NULL;
2029  vec->length = length;
2030  vec->coeff = av_malloc(sizeof(double) * length);
2031  if (!vec->coeff)
2032  av_freep(&vec);
2033  return vec;
2034 }
2035 
2036 SwsVector *sws_getGaussianVec(double variance, double quality)
2037 {
2038  const int length = (int)(variance * quality + 0.5) | 1;
2039  int i;
2040  double middle = (length - 1) * 0.5;
2041  SwsVector *vec;
2042 
2043  if(variance < 0 || quality < 0)
2044  return NULL;
2045 
2046  vec = sws_allocVec(length);
2047 
2048  if (!vec)
2049  return NULL;
2050 
2051  for (i = 0; i < length; i++) {
2052  double dist = i - middle;
2053  vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
2054  sqrt(2 * variance * M_PI);
2055  }
2056 
2057  sws_normalizeVec(vec, 1.0);
2058 
2059  return vec;
2060 }
2061 
2062 /**
2063  * Allocate and return a vector with length coefficients, all
2064  * with the same value c.
2065  */
2066 #if !FF_API_SWS_VECTOR
2067 static
2068 #endif
2069 SwsVector *sws_getConstVec(double c, int length)
2070 {
2071  int i;
2072  SwsVector *vec = sws_allocVec(length);
2073 
2074  if (!vec)
2075  return NULL;
2076 
2077  for (i = 0; i < length; i++)
2078  vec->coeff[i] = c;
2079 
2080  return vec;
2081 }
2082 
2083 /**
2084  * Allocate and return a vector with just one coefficient, with
2085  * value 1.0.
2086  */
2087 #if !FF_API_SWS_VECTOR
2088 static
2089 #endif
2091 {
2092  return sws_getConstVec(1.0, 1);
2093 }
2094 
2095 static double sws_dcVec(SwsVector *a)
2096 {
2097  int i;
2098  double sum = 0;
2099 
2100  for (i = 0; i < a->length; i++)
2101  sum += a->coeff[i];
2102 
2103  return sum;
2104 }
2105 
2106 void sws_scaleVec(SwsVector *a, double scalar)
2107 {
2108  int i;
2109 
2110  for (i = 0; i < a->length; i++)
2111  a->coeff[i] *= scalar;
2112 }
2113 
2115 {
2116  sws_scaleVec(a, height / sws_dcVec(a));
2117 }
2118 
2119 #if FF_API_SWS_VECTOR
2121 {
2122  int length = a->length + b->length - 1;
2123  int i, j;
2124  SwsVector *vec = sws_getConstVec(0.0, length);
2125 
2126  if (!vec)
2127  return NULL;
2128 
2129  for (i = 0; i < a->length; i++) {
2130  for (j = 0; j < b->length; j++) {
2131  vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
2132  }
2133  }
2134 
2135  return vec;
2136 }
2137 #endif
2138 
2140 {
2141  int length = FFMAX(a->length, b->length);
2142  int i;
2143  SwsVector *vec = sws_getConstVec(0.0, length);
2144 
2145  if (!vec)
2146  return NULL;
2147 
2148  for (i = 0; i < a->length; i++)
2149  vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
2150  for (i = 0; i < b->length; i++)
2151  vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
2152 
2153  return vec;
2154 }
2155 
2156 #if FF_API_SWS_VECTOR
2158 {
2159  int length = FFMAX(a->length, b->length);
2160  int i;
2161  SwsVector *vec = sws_getConstVec(0.0, length);
2162 
2163  if (!vec)
2164  return NULL;
2165 
2166  for (i = 0; i < a->length; i++)
2167  vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
2168  for (i = 0; i < b->length; i++)
2169  vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
2170 
2171  return vec;
2172 }
2173 #endif
2174 
2175 /* shift left / or right if "shift" is negative */
2177 {
2178  int length = a->length + FFABS(shift) * 2;
2179  int i;
2180  SwsVector *vec = sws_getConstVec(0.0, length);
2181 
2182  if (!vec)
2183  return NULL;
2184 
2185  for (i = 0; i < a->length; i++) {
2186  vec->coeff[i + (length - 1) / 2 -
2187  (a->length - 1) / 2 - shift] = a->coeff[i];
2188  }
2189 
2190  return vec;
2191 }
2192 
2193 #if !FF_API_SWS_VECTOR
2194 static
2195 #endif
2197 {
2198  SwsVector *shifted = sws_getShiftedVec(a, shift);
2199  if (!shifted) {
2200  makenan_vec(a);
2201  return;
2202  }
2203  av_free(a->coeff);
2204  a->coeff = shifted->coeff;
2205  a->length = shifted->length;
2206  av_free(shifted);
2207 }
2208 
2209 #if !FF_API_SWS_VECTOR
2210 static
2211 #endif
2213 {
2214  SwsVector *sum = sws_sumVec(a, b);
2215  if (!sum) {
2216  makenan_vec(a);
2217  return;
2218  }
2219  av_free(a->coeff);
2220  a->coeff = sum->coeff;
2221  a->length = sum->length;
2222  av_free(sum);
2223 }
2224 
2225 #if FF_API_SWS_VECTOR
2227 {
2228  SwsVector *diff = sws_diffVec(a, b);
2229  if (!diff) {
2230  makenan_vec(a);
2231  return;
2232  }
2233  av_free(a->coeff);
2234  a->coeff = diff->coeff;
2235  a->length = diff->length;
2236  av_free(diff);
2237 }
2238 
2240 {
2241  SwsVector *conv = sws_getConvVec(a, b);
2242  if (!conv) {
2243  makenan_vec(a);
2244  return;
2245  }
2246  av_free(a->coeff);
2247  a->coeff = conv->coeff;
2248  a->length = conv->length;
2249  av_free(conv);
2250 }
2251 
2253 {
2254  SwsVector *vec = sws_allocVec(a->length);
2255 
2256  if (!vec)
2257  return NULL;
2258 
2259  memcpy(vec->coeff, a->coeff, a->length * sizeof(*a->coeff));
2260 
2261  return vec;
2262 }
2263 #endif
2264 
2265 /**
2266  * Print with av_log() a textual representation of the vector a
2267  * if log_level <= av_log_level.
2268  */
2269 #if !FF_API_SWS_VECTOR
2270 static
2271 #endif
2272 void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
2273 {
2274  int i;
2275  double max = 0;
2276  double min = 0;
2277  double range;
2278 
2279  for (i = 0; i < a->length; i++)
2280  if (a->coeff[i] > max)
2281  max = a->coeff[i];
2282 
2283  for (i = 0; i < a->length; i++)
2284  if (a->coeff[i] < min)
2285  min = a->coeff[i];
2286 
2287  range = max - min;
2288 
2289  for (i = 0; i < a->length; i++) {
2290  int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
2291  av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
2292  for (; x > 0; x--)
2293  av_log(log_ctx, log_level, " ");
2294  av_log(log_ctx, log_level, "|\n");
2295  }
2296 }
2297 
2299 {
2300  if (!a)
2301  return;
2302  av_freep(&a->coeff);
2303  a->length = 0;
2304  av_free(a);
2305 }
2306 
2308 {
2309  if (!filter)
2310  return;
2311 
2312  sws_freeVec(filter->lumH);
2313  sws_freeVec(filter->lumV);
2314  sws_freeVec(filter->chrH);
2315  sws_freeVec(filter->chrV);
2316  av_free(filter);
2317 }
2318 
2320 {
2321  int i;
2322  if (!c)
2323  return;
2324 
2325  for (i = 0; i < 4; i++)
2326  av_freep(&c->dither_error[i]);
2327 
2328  av_freep(&c->vLumFilter);
2329  av_freep(&c->vChrFilter);
2330  av_freep(&c->hLumFilter);
2331  av_freep(&c->hChrFilter);
2332 #if HAVE_ALTIVEC
2333  av_freep(&c->vYCoeffsBank);
2334  av_freep(&c->vCCoeffsBank);
2335 #endif
2336 
2337  av_freep(&c->vLumFilterPos);
2338  av_freep(&c->vChrFilterPos);
2339  av_freep(&c->hLumFilterPos);
2340  av_freep(&c->hChrFilterPos);
2341 
2342 #if HAVE_MMX_INLINE
2343 #if USE_MMAP
2344  if (c->lumMmxextFilterCode)
2346  if (c->chrMmxextFilterCode)
2348 #elif HAVE_VIRTUALALLOC
2349  if (c->lumMmxextFilterCode)
2350  VirtualFree(c->lumMmxextFilterCode, 0, MEM_RELEASE);
2351  if (c->chrMmxextFilterCode)
2352  VirtualFree(c->chrMmxextFilterCode, 0, MEM_RELEASE);
2353 #else
2356 #endif
2359 #endif /* HAVE_MMX_INLINE */
2360 
2361  av_freep(&c->yuvTable);
2363 
2367  memset(c->cascaded_context, 0, sizeof(c->cascaded_context));
2368  av_freep(&c->cascaded_tmp[0]);
2369  av_freep(&c->cascaded1_tmp[0]);
2370 
2371  av_freep(&c->gamma);
2372  av_freep(&c->inv_gamma);
2373 
2374  ff_free_filters(c);
2375 
2376  av_free(c);
2377 }
2378 
2379 struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW,
2380  int srcH, enum AVPixelFormat srcFormat,
2381  int dstW, int dstH,
2382  enum AVPixelFormat dstFormat, int flags,
2383  SwsFilter *srcFilter,
2384  SwsFilter *dstFilter,
2385  const double *param)
2386 {
2387  static const double default_param[2] = { SWS_PARAM_DEFAULT,
2389  int64_t src_h_chr_pos = -513, dst_h_chr_pos = -513,
2390  src_v_chr_pos = -513, dst_v_chr_pos = -513;
2391 
2392  if (!param)
2393  param = default_param;
2394 
2395  if (context &&
2396  (context->srcW != srcW ||
2397  context->srcH != srcH ||
2398  context->srcFormat != srcFormat ||
2399  context->dstW != dstW ||
2400  context->dstH != dstH ||
2401  context->dstFormat != dstFormat ||
2402  context->flags != flags ||
2403  context->param[0] != param[0] ||
2404  context->param[1] != param[1])) {
2405 
2406  av_opt_get_int(context, "src_h_chr_pos", 0, &src_h_chr_pos);
2407  av_opt_get_int(context, "src_v_chr_pos", 0, &src_v_chr_pos);
2408  av_opt_get_int(context, "dst_h_chr_pos", 0, &dst_h_chr_pos);
2409  av_opt_get_int(context, "dst_v_chr_pos", 0, &dst_v_chr_pos);
2410  sws_freeContext(context);
2411  context = NULL;
2412  }
2413 
2414  if (!context) {
2415  if (!(context = sws_alloc_context()))
2416  return NULL;
2417  context->srcW = srcW;
2418  context->srcH = srcH;
2419  context->srcFormat = srcFormat;
2420  context->dstW = dstW;
2421  context->dstH = dstH;
2422  context->dstFormat = dstFormat;
2423  context->flags = flags;
2424  context->param[0] = param[0];
2425  context->param[1] = param[1];
2426 
2427  av_opt_set_int(context, "src_h_chr_pos", src_h_chr_pos, 0);
2428  av_opt_set_int(context, "src_v_chr_pos", src_v_chr_pos, 0);
2429  av_opt_set_int(context, "dst_h_chr_pos", dst_h_chr_pos, 0);
2430  av_opt_set_int(context, "dst_v_chr_pos", dst_v_chr_pos, 0);
2431 
2432  if (sws_init_context(context, srcFilter, dstFilter) < 0) {
2433  sws_freeContext(context);
2434  return NULL;
2435  }
2436  }
2437  return context;
2438 }
packed YUV 4:2:2, 16bpp, Cb Y0 Cr Y1
Definition: pixfmt.h:81
SwsVector * chrV
Definition: swscale.h:119
IEEE-754 single precision Y, 32bpp, big-endian.
Definition: pixfmt.h:340
packed YUV 4:2:2 like YUYV422, 20bpp, data in the high bits, little-endian
Definition: pixfmt.h:359
uint8_t is_supported_out
Definition: utils.c:94
planar GBR 4:4:4:4 40bpp, little-endian
Definition: pixfmt.h:291
#define NULL
Definition: coverity.c:32
int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
Return a positive value if pix_fmt is a supported output format, 0 otherwise.
Definition: utils.c:282
planar YUV 4:2:2, 18bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:166
static av_always_inline int isAnyRGB(enum AVPixelFormat pix_fmt)
planar YUV 4:4:0,20bpp, (1 Cr & Cb sample per 1x2 Y samples), little-endian
Definition: pixfmt.h:275
planar YUV 4:4:4,42bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:252
static enum AVPixelFormat pix_fmt
static SwsVector * sws_sumVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2139
av_cold void ff_yuv2rgb_init_tables_ppc(SwsContext *c, const int inv_table[4], int brightness, int contrast, int saturation)
static const FormatEntry format_entries[]
Definition: utils.c:98
static int shift(int a, int b)
Definition: sonic.c:82
static int handle_0alpha(enum AVPixelFormat *format)
Definition: utils.c:1054
planar YUV 4:2:0,21bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:245
#define SWS_SRC_V_CHR_DROP_MASK
Definition: swscale.h:70
static const char * format[]
Definition: af_aiir.c:339
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
Definition: pixdesc.c:2549
int chrSrcH
Height of source chroma planes.
#define FF_ALLOCZ_ARRAY_OR_GOTO(ctx, p, nelem, elsize, label)
Definition: internal.h:167
#define SWS_X
Definition: swscale.h:61
int ff_free_filters(SwsContext *c)
Definition: slice.c:386
static av_always_inline int isPlanarRGB(enum AVPixelFormat pix_fmt)
#define LIBSWSCALE_VERSION_MICRO
Definition: version.h:31
#define RV_IDX
#define SWS_BICUBIC
Definition: swscale.h:60
uint8_t * chrMmxextFilterCode
Runtime-generated MMXEXT horizontal fast bilinear scaler code for chroma planes.
static void fill_rgb2yuv_table(SwsContext *c, const int table[4], int dstRange)
Definition: utils.c:733
planar YUV 4:2:2,28bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:249
planar YUV 4:2:0, 15bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:159
#define BV_IDX
static int conv(int samples, float **pcm, char *buf, int channels)
Definition: libvorbisdec.c:131
#define C
8 bits gray, 8 bits alpha
Definition: pixfmt.h:143
packed RGBA 16:16:16:16, 64bpp, 16B, 16G, 16R, 16A, the 2-byte value for each R/G/B/A component is st...
Definition: pixfmt.h:208
#define ARCH_PPC
Definition: config.h:29
uint8_t * lumMmxextFilterCode
Runtime-generated MMXEXT horizontal fast bilinear scaler code for luma/alpha planes.
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
Definition: pixfmt.h:71
misc image utilities
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
SwsVector * lumV
Definition: swscale.h:117
planar YUV 4:4:4,36bpp, (1 Cr & Cb sample per 1x1 Y samples), 12b alpha, little-endian ...
Definition: pixfmt.h:346
Definition: vf_addroi.c:26
int16_t * rgbgamma
packed RGB 8:8:8, 24bpp, RGBRGB...
Definition: pixfmt.h:68
packed RGB 1:2:1 bitstream, 4bpp, (msb)1B 2G 1R(lsb), a byte contains two pixels, the first pixel in ...
Definition: pixfmt.h:84
static av_cold int get_local_pos(SwsContext *s, int chr_subsample, int pos, int dir)
Definition: utils.c:307
SwsAlphaBlend alphablend
int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation)
Definition: utils.c:998
int av_image_alloc(uint8_t *pointers[4], int linesizes[4], int w, int h, enum AVPixelFormat pix_fmt, int align)
Allocate an image with size w and h and pixel format pix_fmt, and fill pointers and linesizes accordi...
Definition: imgutils.c:192
planar YUV 4:4:4, 27bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:162
int acc
Definition: yuv2rgb.c:555
int av_get_bits_per_pixel(const AVPixFmtDescriptor *pixdesc)
Return the number of bits per pixel used by the pixel format described by pixdesc.
Definition: pixdesc.c:2501
SwsVector * sws_getGaussianVec(double variance, double quality)
Return a normalized Gaussian curve used to filter stuff quality = 3 is high quality, lower is lower quality.
Definition: utils.c:2036
planar YUV 4:4:4,36bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:250
bayer, GBGB..(odd line), RGRG..(even line), 8-bit samples
Definition: pixfmt.h:262
void av_opt_set_defaults(void *s)
Set the values of all AVOption fields to their default values.
Definition: opt.c:1357
int vChrDrop
Binary logarithm of extra vertical subsampling factor in source image chroma planes specified by user...
bayer, GRGR..(odd line), BGBG..(even line), 8-bit samples
Definition: pixfmt.h:263
int ff_yuv2rgb_c_init_tables(SwsContext *c, const int inv_table[4], int fullRange, int brightness, int contrast, int saturation)
Definition: yuv2rgb.c:774
planar GBR 4:4:4 24bpp
Definition: pixfmt.h:168
packed RGBA 16:16:16:16, 64bpp, 16B, 16G, 16R, 16A, the 2-byte value for each R/G/B/A component is st...
Definition: pixfmt.h:207
packed RGB 5:5:5, 16bpp, (msb)1X 5R 5G 5B(lsb), little-endian, X=unused/undefined ...
Definition: pixfmt.h:108
#define SWS_BICUBLIN
Definition: swscale.h:64
int16_t * rgbgammainv
const char * b
Definition: vf_curves.c:116
static double getSplineCoeff(double a, double b, double c, double d, double dist)
Definition: utils.c:294
#define AV_PIX_FMT_GBRP10
Definition: pixfmt.h:413
bayer, GRGR..(odd line), BGBG..(even line), 16-bit samples, little-endian
Definition: pixfmt.h:270
#define GV_IDX
int dstFormatBpp
Number of bits per pixel of the destination pixel format.
#define AV_PIX_FMT_BGRA64
Definition: pixfmt.h:392
planar YUV 4:4:4 40bpp, (1 Cr & Cb sample per 1x1 Y & A samples, little-endian)
Definition: pixfmt.h:189
static av_always_inline int is16BPS(enum AVPixelFormat pix_fmt)
Convenience header that includes libavutil&#39;s core.
static int handle_jpeg(enum AVPixelFormat *format)
Definition: utils.c:1016
int sws_isSupportedEndiannessConversion(enum AVPixelFormat pix_fmt)
Definition: utils.c:288
static int isnan_vec(SwsVector *a)
Definition: utils.c:1920
int16_t * xyzgammainv
packed BGR 5:6:5, 16bpp, (msb) 5B 6G 5R(lsb), little-endian
Definition: pixfmt.h:111
#define SWS_SRC_V_CHR_DROP_SHIFT
Definition: swscale.h:71
const char * swscale_configuration(void)
Return the libswscale build-time configuration.
Definition: utils.c:81
planar GBR 4:4:4 36bpp, little-endian
Definition: pixfmt.h:255
The following 12 formats have the disadvantage of needing 1 format for each bit depth.
Definition: pixfmt.h:156
packed RGB 4:4:4, 16bpp, (msb)4X 4R 4G 4B(lsb), big-endian, X=unused/undefined
Definition: pixfmt.h:140
static atomic_int cpu_flags
Definition: cpu.c:50
const int32_t ff_yuv2rgb_coeffs[11][4]
Definition: yuv2rgb.c:49
packed BGR 8:8:8, 32bpp, XBGRXBGR... X=unused/undefined
Definition: pixfmt.h:239
int srcRange
0 = MPG YUV range, 1 = JPG YUV range (source image).
bayer, BGBG..(odd line), GRGR..(even line), 8-bit samples
Definition: pixfmt.h:260
static void error(const char *err)
#define RGB_GAMMA
#define SWS_PRINT_INFO
Definition: swscale.h:75
Y , 12bpp, little-endian.
Definition: pixfmt.h:296
enum AVPixelFormat av_pix_fmt_swap_endianness(enum AVPixelFormat pix_fmt)
Utility function to swap the endianness of a pixel format.
Definition: pixdesc.c:2645
planar GBR 4:4:4 36bpp, big-endian
Definition: pixfmt.h:254
planar YUV 4:2:0, 24bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:131
packed RGB 1:2:1 bitstream, 4bpp, (msb)1R 2G 1B(lsb), a byte contains two pixels, the first pixel in ...
Definition: pixfmt.h:87
#define FFMPEG_LICENSE
Definition: config.h:5
Macro definitions for various function/variable attributes.
packed RGB 5:6:5, 16bpp, (msb) 5R 6G 5B(lsb), little-endian
Definition: pixfmt.h:106
int srcH
Height of source luma/alpha planes.
packed RGB 1:2:1, 8bpp, (msb)1B 2G 1R(lsb)
Definition: pixfmt.h:85
#define SWS_BILINEAR
Definition: swscale.h:59
planar YUV 4:2:0 22.5bpp, (1 Cr & Cb sample per 2x2 Y & A samples), little-endian ...
Definition: pixfmt.h:179
void sws_convVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2239
#define RU_IDX
planar GBRA 4:4:4:4 64bpp, big-endian
Definition: pixfmt.h:216
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
planar YUV 4:2:0 40bpp, (1 Cr & Cb sample per 2x2 Y & A samples, big-endian)
Definition: pixfmt.h:190
static void filter(int16_t *output, ptrdiff_t out_stride, int16_t *low, ptrdiff_t low_stride, int16_t *high, ptrdiff_t high_stride, int len, int clip)
Definition: cfhd.c:196
static uint16_t * alloc_gamma_tbl(double e)
Definition: utils.c:1098
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
Definition: pixfmt.h:101
int chrDstVSubSample
Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in destination i...
planar YUV 4:2:2,24bpp, (1 Cr & Cb sample per 2x1 Y samples), 12b alpha, little-endian ...
Definition: pixfmt.h:344
ptrdiff_t uv_off
offset (in pixels) between u and v planes
AVComponentDescriptor comp[4]
Parameters that describe how pixels are packed.
Definition: pixdesc.h:117
uint8_t
#define av_cold
Definition: attributes.h:88
#define av_malloc(s)
int length
number of coefficients in the vector
Definition: swscale.h:111
av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter, SwsFilter *dstFilter)
Initialize the swscaler context sws_context.
Definition: utils.c:1170
#define SWS_LANCZOS
Definition: swscale.h:67
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
Definition: avassert.h:64
packed RGB 8:8:8, 32bpp, RGBXRGBX... X=unused/undefined
Definition: pixfmt.h:238
8 bits with AV_PIX_FMT_RGB32 palette
Definition: pixfmt.h:77
AVOptions.
packed RGB 16:16:16, 48bpp, 16R, 16G, 16B, the 2-byte value for each R/G/B component is stored as lit...
Definition: pixfmt.h:103
SwsVector * sws_cloneVec(SwsVector *a)
Definition: utils.c:2252
int vChrFilterSize
Vertical filter size for chroma pixels.
#define f(width, name)
Definition: cbs_vp9.c:255
bayer, GBGB..(odd line), RGRG..(even line), 16-bit samples, little-endian
Definition: pixfmt.h:268
bayer, GBGB..(odd line), RGRG..(even line), 16-bit samples, big-endian
Definition: pixfmt.h:269
packed RGBA 16:16:16:16, 64bpp, 16R, 16G, 16B, 16A, the 2-byte value for each R/G/B/A component is st...
Definition: pixfmt.h:205
packed RGB 4:4:4, 16bpp, (msb)4X 4R 4G 4B(lsb), little-endian, X=unused/undefined ...
Definition: pixfmt.h:139
planar YUV 4:4:4,36bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:251
#define emms_c()
Definition: internal.h:55
#define SWS_FULL_CHR_H_INT
Definition: swscale.h:79
int cascaded_tmpStride[4]
packed RGB 5:6:5, 16bpp, (msb) 5R 6G 5B(lsb), big-endian
Definition: pixfmt.h:105
packed ABGR 8:8:8:8, 32bpp, ABGRABGR...
Definition: pixfmt.h:94
planar YUV 4:2:0 40bpp, (1 Cr & Cb sample per 2x2 Y & A samples, little-endian)
Definition: pixfmt.h:191
#define SWS_FAST_BILINEAR
Definition: swscale.h:58
SwsVector * sws_getConstVec(double c, int length)
Allocate and return a vector with length coefficients, all with the same value c. ...
Definition: utils.c:2069
planar YUV 4:4:0,20bpp, (1 Cr & Cb sample per 1x2 Y samples), big-endian
Definition: pixfmt.h:276
planar GBR 4:4:4 48bpp, big-endian
Definition: pixfmt.h:174
planar YUV 4:4:0 full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV440P and setting color_range...
Definition: pixfmt.h:100
Y , 9bpp, little-endian.
Definition: pixfmt.h:316
SwsContext * sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat, int dstW, int dstH, enum AVPixelFormat dstFormat, int flags, SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
Allocate and return an SwsContext.
Definition: utils.c:1899
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
Definition: pixfmt.h:79
planar YUV 4:4:4 64bpp, (1 Cr & Cb sample per 1x1 Y & A samples, big-endian)
Definition: pixfmt.h:194
#define AV_PIX_FMT_BGR48
Definition: pixfmt.h:388
#define AV_LOG_VERBOSE
Detailed information.
Definition: log.h:192
int16_t rgb2xyz_matrix[3][4]
#define AV_PIX_FMT_YUV444P16
Definition: pixfmt.h:410
Y , 10bpp, little-endian.
Definition: pixfmt.h:298
#define max(a, b)
Definition: cuda_runtime.h:33
external API header
enum AVPixelFormat dstFormat
Destination pixel format.
#define isALPHA(x)
Definition: swscale.c:51
int ff_sws_alphablendaway(SwsContext *c, const uint8_t *src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t *dst[], int dstStride[])
Definition: alphablend.c:23
planar YUV 4:4:0,24bpp, (1 Cr & Cb sample per 1x2 Y samples), big-endian
Definition: pixfmt.h:278
uint16_t * inv_gamma
#define A(x)
Definition: vp56_arith.h:28
bayer, BGBG..(odd line), GRGR..(even line), 16-bit samples, little-endian
Definition: pixfmt.h:264
#define FFALIGN(x, a)
Definition: macros.h:48
int chrSrcHSubSample
Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in source imag...
#define av_log(a,...)
static av_always_inline int isYUV(enum AVPixelFormat pix_fmt)
float uint2float_lut[256]
static SwsVector * sws_getShiftedVec(SwsVector *a, int shift)
Definition: utils.c:2176
static const uint16_t table[]
Definition: prosumer.c:206
uint64_t vRounder
#define ROUNDED_DIV(a, b)
Definition: common.h:56
int32_t * vChrFilterPos
Array of vertical filter starting positions for each dst[i] for chroma planes.
int dstH
Height of destination luma/alpha planes.
int * dither_error[4]
planar YUV 4:2:0, 13.5bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:157
SwsFilter * sws_getDefaultFilter(float lumaGBlur, float chromaGBlur, float lumaSharpen, float chromaSharpen, float chromaHShift, float chromaVShift, int verbose)
Definition: utils.c:1936
planar GBR 4:4:4 27bpp, big-endian
Definition: pixfmt.h:170
#define INLINE_MMX(flags)
Definition: cpu.h:86
planar YUV 4:4:4, 30bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:165
planar YUV 4:2:2 24bpp, (1 Cr & Cb sample per 2x1 Y & A samples)
Definition: pixfmt.h:176
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:269
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
16 bits gray, 16 bits alpha (big-endian)
Definition: pixfmt.h:212
like NV12, with 16bpp per component, big-endian
Definition: pixfmt.h:301
int32_t * hChrFilterPos
Array of horizontal filter starting positions for each dst[i] for chroma planes.
planar YUV 4:4:4, 48bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:136
#define AVERROR(e)
Definition: error.h:43
int hLumFilterSize
Horizontal filter size for luma/alpha pixels.
SwsFunc ff_getSwsFunc(SwsContext *c)
Return function pointer to fastest main scaler path function depending on architecture and available ...
Definition: swscale.c:583
const char * description
human-readable description
Definition: utils.c:318
int av_pix_fmt_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
Definition: pixdesc.c:2577
#define B
Definition: huffyuvdsp.h:32
#define PPC_ALTIVEC(flags)
Definition: cpu.h:25
#define SWS_MAX_REDUCE_CUTOFF
Definition: swscale.h:87
packed BGRA 8:8:8:8, 32bpp, BGRABGRA...
Definition: pixfmt.h:95
void sws_subVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2226
unsigned int pos
Definition: spdifenc.c:412
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:197
void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
Print with av_log() a textual representation of the vector a if log_level <= av_log_level.
Definition: utils.c:2272
planar YUV 4:4:4 36bpp, (1 Cr & Cb sample per 1x1 Y & A samples), big-endian
Definition: pixfmt.h:182
planar YUV 4:2:2, 20bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:161
int av_opt_set_int(void *obj, const char *name, int64_t val, int search_flags)
Definition: opt.c:586
planar YUV 4:2:0, 12bpp, 1 plane for Y and 1 plane for the UV components, which are interleaved (firs...
Definition: pixfmt.h:89
#define AV_PIX_FMT_RGB48
Definition: pixfmt.h:383
simple assert() macros that are a bit more flexible than ISO C assert().
planar YUV 4:2:2,28bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:248
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
Definition: mem.c:237
like NV12, with 16bpp per component, little-endian
Definition: pixfmt.h:300
planar YUV 4:2:2, 32bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:134
#define AV_PIX_FMT_YUV444P10
Definition: pixfmt.h:400
like NV12, with 10bpp per component, data in the high bits, zeros in the low bits, big-endian
Definition: pixfmt.h:285
#define SWS_CS_DEFAULT
Definition: swscale.h:95
#define X86_MMX(flags)
Definition: cpu.h:30
planar YUV 4:4:4 36bpp, (1 Cr & Cb sample per 1x1 Y & A samples), little-endian
Definition: pixfmt.h:183
#define FFMAX(a, b)
Definition: common.h:94
packed ARGB 8:8:8:8, 32bpp, ARGBARGB...
Definition: pixfmt.h:92
void sws_scaleVec(SwsVector *a, double scalar)
Scale all the coefficients of a by the scalar value.
Definition: utils.c:2106
int chrDstW
Width of destination chroma planes.
SwsVector * lumH
Definition: swscale.h:116
#define fail()
Definition: checkasm.h:123
int8_t exp
Definition: eval.c:72
packed RGB 16:16:16, 48bpp, 16B, 16G, 16R, the 2-byte value for each R/G/B component is stored as lit...
Definition: pixfmt.h:149
packed RGBA 8:8:8:8, 32bpp, RGBARGBA...
Definition: pixfmt.h:93
uint8_t * cascaded1_tmp[4]
void sws_normalizeVec(SwsVector *a, double height)
Scale all the coefficients of a so that their sum equals height.
Definition: utils.c:2114
planar YUV 4:2:0 25bpp, (1 Cr & Cb sample per 2x2 Y & A samples, big-endian)
Definition: pixfmt.h:184
struct SwsContext * sws_getCachedContext(struct SwsContext *context, int srcW, int srcH, enum AVPixelFormat srcFormat, int dstW, int dstH, enum AVPixelFormat dstFormat, int flags, SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
Check if context can be reused, otherwise reallocate a new one.
Definition: utils.c:2379
#define LICENSE_PREFIX
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Definition: pixfmt.h:70
#define RETCODE_USE_CASCADE
static enum AVPixelFormat alphaless_fmt(enum AVPixelFormat fmt)
Definition: utils.c:1112
int32_t * hLumFilterPos
Array of horizontal filter starting positions for each dst[i] for luma/alpha planes.
void sws_freeFilter(SwsFilter *filter)
Definition: utils.c:2307
int hChrFilterSize
Horizontal filter size for chroma pixels.
int16_t * xyzgamma
SwsVector * sws_allocVec(int length)
Allocate and return an uninitialized vector with length coefficients.
Definition: utils.c:2019
planar YUV 4:4:4, 24bpp, 1 plane for Y and 1 plane for the UV components, which are interleaved (firs...
Definition: pixfmt.h:348
#define AV_PIX_FMT_YUV422P9
Definition: pixfmt.h:395
as above, but U and V bytes are swapped
Definition: pixfmt.h:90
int dstRange
0 = MPG YUV range, 1 = JPG YUV range (destination image).
planar GBR 4:4:4:4 48bpp, big-endian
Definition: pixfmt.h:287
#define RGB2YUV_SHIFT
ptrdiff_t uv_offx2
offset (in bytes) between u and v planes
planar GBR 4:4:4:4 40bpp, big-endian
Definition: pixfmt.h:290
#define APCK_SIZE
#define have_neon(flags)
Definition: cpu.h:26
#define AV_PIX_FMT_GBRP16
Definition: pixfmt.h:416
IEEE-754 single precision planar GBR 4:4:4, 96bpp, little-endian.
Definition: pixfmt.h:319
#define AV_PIX_FMT_GRAY16
Definition: pixfmt.h:381
#define NAN
Definition: mathematics.h:64
#define FFMIN(a, b)
Definition: common.h:96
packed RGB 1:2:1, 8bpp, (msb)1R 2G 1B(lsb)
Definition: pixfmt.h:88
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
Definition: pixfmt.h:78
#define SWS_GAUSS
Definition: swscale.h:65
SwsVector * chrH
Definition: swscale.h:118
uint8_t * formatConvBuffer
#define INLINE_AMD3DNOW(flags)
Definition: cpu.h:84
static av_always_inline int isBayer(enum AVPixelFormat pix_fmt)
av_cold void ff_sws_rgb2rgb_init(void)
Definition: rgb2rgb.c:137
int32_t
#define RY_IDX
void sws_shiftVec(SwsVector *a, int shift)
Definition: utils.c:2196
void sws_freeContext(SwsContext *c)
Free the swscaler context swsContext.
Definition: utils.c:2319
planar YUV 4:4:4 40bpp, (1 Cr & Cb sample per 1x1 Y & A samples, big-endian)
Definition: pixfmt.h:188
packed YUV 4:2:2, 16bpp, Y0 Cr Y1 Cb
Definition: pixfmt.h:210
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
#define s(width, name)
Definition: cbs_vp9.c:257
planar YUV 4:2:2 27bpp, (1 Cr & Cb sample per 2x1 Y & A samples), big-endian
Definition: pixfmt.h:180
packed RGB 8:8:8, 24bpp, BGRBGR...
Definition: pixfmt.h:69
planar YUV 4:2:0,18bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:243
packed XYZ 4:4:4, 36 bpp, (msb) 12X, 12Y, 12Z (lsb), the 2-byte value for each X/Y/Z is stored as big...
Definition: pixfmt.h:200
planar YUV 4:2:0, 15bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
Definition: pixfmt.h:158
av_cold void ff_sws_init_range_convert(SwsContext *c)
Definition: swscale.c:526
SwsContext * sws_alloc_set_opts(int srcW, int srcH, enum AVPixelFormat srcFormat, int dstW, int dstH, enum AVPixelFormat dstFormat, int flags, const double *param)
Allocate and return an SwsContext.
Definition: utils.c:1874
unsigned swscale_version(void)
Definition: utils.c:75
like NV12, with 10bpp per component, data in the high bits, zeros in the low bits, little-endian
Definition: pixfmt.h:284
double gamma_value
int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation)
Definition: utils.c:863
int srcColorspaceTable[4]
int dstW
Width of destination luma/alpha planes.
#define AV_PIX_FMT_YUV444P9
Definition: pixfmt.h:396
planar YUV 4:2:2, 18bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:167
packed RGB 16:16:16, 48bpp, 16B, 16G, 16R, the 2-byte value for each R/G/B component is stored as big...
Definition: pixfmt.h:148
#define DITHER1XBPP
packed BGR 5:6:5, 16bpp, (msb) 5B 6G 5R(lsb), big-endian
Definition: pixfmt.h:110
uint8_t * cascaded_tmp[4]
#define FF_ARRAY_ELEMS(a)
#define av_log2
Definition: intmath.h:83
static const ScaleAlgorithm scale_algorithms[]
Definition: utils.c:322
int cascaded1_tmpStride[4]
planar GBR 4:4:4:4 48bpp, little-endian
Definition: pixfmt.h:288
#define AV_PIX_FMT_YUV420P16
Definition: pixfmt.h:408
int32_t * vLumFilterPos
Array of vertical filter starting positions for each dst[i] for luma/alpha planes.
#define isGray(x)
Definition: swscale.c:40
#define AV_PIX_FMT_BGR555
Definition: pixfmt.h:390
int av_opt_get_int(void *obj, const char *name, int search_flags, int64_t *out_val)
Definition: opt.c:912
#define MAX_FILTER_SIZE
Definition: af_dynaudnorm.c:33
packed RGB 3:3:2, 8bpp, (msb)2B 3G 3R(lsb)
Definition: pixfmt.h:83
double * coeff
pointer to the list of coefficients
Definition: swscale.h:110
int flag
flag associated to the algorithm
Definition: utils.c:317
#define AV_LOG_INFO
Standard information.
Definition: log.h:187
planar YUV 4:2:0, 24bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
Definition: pixfmt.h:132
int dstColorspaceTable[4]
#define AV_PIX_FMT_GRAYF32
Definition: pixfmt.h:429
static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos, int *outFilterSize, int xInc, int srcW, int dstW, int filterAlign, int one, int flags, int cpu_flags, SwsVector *srcFilter, SwsVector *dstFilter, double param[2], int srcPos, int dstPos)
Definition: utils.c:336
const AVClass * av_class
info on struct for av_log
int16_t xyz2rgb_matrix[3][4]
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
Definition: pixfmt.h:177
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
Definition: pixdesc.h:81
#define DITHER32_INT
bayer, RGRG..(odd line), GBGB..(even line), 16-bit samples, big-endian
Definition: pixfmt.h:267
void sws_freeVec(SwsVector *a)
Definition: utils.c:2298
planar GBR 4:4:4 30bpp, big-endian
Definition: pixfmt.h:172
#define AV_CPU_FLAG_MMX
standard MMX
Definition: cpu.h:31
bayer, GRGR..(odd line), BGBG..(even line), 16-bit samples, big-endian
Definition: pixfmt.h:271
planar YUV 4:2:2 48bpp, (1 Cr & Cb sample per 2x1 Y & A samples, big-endian)
Definition: pixfmt.h:192
long long int64_t
Definition: coverity.c:34
int chrDstH
Height of destination chroma planes.
#define ub(width, name)
Definition: cbs_h2645.c:264
packed YUV 4:2:2, 16bpp, Y0 Cb Y1 Cr
Definition: pixfmt.h:67
planar YUV 4:4:0,24bpp, (1 Cr & Cb sample per 1x2 Y samples), little-endian
Definition: pixfmt.h:277
planar GBR 4:4:4 42bpp, little-endian
Definition: pixfmt.h:257
#define SWS_ERROR_DIFFUSION
Definition: swscale.h:85
Replacements for frequently missing libm functions.
#define SWS_AREA
Definition: swscale.h:63
#define AV_PIX_FMT_YUV420P10
Definition: pixfmt.h:397
planar YUV 4:1:0, 9bpp, (1 Cr & Cb sample per 4x4 Y samples)
Definition: pixfmt.h:72
planar YUV 4:2:2 48bpp, (1 Cr & Cb sample per 2x1 Y & A samples, little-endian)
Definition: pixfmt.h:193
static SwsVector * sws_diffVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2157
int lumMmxextFilterCodeSize
Runtime-generated MMXEXT horizontal fast bilinear scaler code size for luma/alpha planes...
Describe the class of an AVClass context structure.
Definition: log.h:67
planar YUV 4:4:4 64bpp, (1 Cr & Cb sample per 1x1 Y & A samples, little-endian)
Definition: pixfmt.h:195
int ff_init_hscaler_mmxext(int dstW, int xInc, uint8_t *filterCode, int16_t *filter, int32_t *filterPos, int numSplits)
Y , 16bpp, big-endian.
Definition: pixfmt.h:97
as above, but U and V bytes are swapped
Definition: pixfmt.h:349
IEEE-754 single precision planar GBR 4:4:4, 96bpp, big-endian.
Definition: pixfmt.h:318
#define isnan(x)
Definition: libm.h:340
int verbose
Definition: checkasm.c:272
int vLumFilterSize
Vertical filter size for luma/alpha pixels.
#define SWS_ACCURATE_RND
Definition: swscale.h:83
byte swapping routines
static void handle_formats(SwsContext *c)
Definition: utils.c:1074
planar YUV 4:2:0,21bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
Definition: pixfmt.h:244
planar YUV 4:4:4,36bpp, (1 Cr & Cb sample per 1x1 Y samples), 12b alpha, big-endian ...
Definition: pixfmt.h:345
packed BGR 8:8:8, 32bpp, BGRXBGRX... X=unused/undefined
Definition: pixfmt.h:240
int chrMmxextFilterCodeSize
Runtime-generated MMXEXT horizontal fast bilinear scaler code size for chroma planes.
Y , 9bpp, big-endian.
Definition: pixfmt.h:315
planar GBR 4:4:4 42bpp, big-endian
Definition: pixfmt.h:256
planar YUV 4:2:0 22.5bpp, (1 Cr & Cb sample per 2x2 Y & A samples), big-endian
Definition: pixfmt.h:178
#define AV_PIX_FMT_YUV420P9
Definition: pixfmt.h:394
const VDPAUPixFmtMap * map
packed BGR 5:5:5, 16bpp, (msb)1X 5B 5G 5R(lsb), little-endian, X=unused/undefined ...
Definition: pixfmt.h:113
int16_t * vChrFilter
Array of vertical filter coefficients for chroma planes.
int av_get_cpu_flags(void)
Return the flags which specify extensions supported by the CPU.
Definition: cpu.c:93
#define SWS_POINT
Definition: swscale.h:62
int ff_init_filters(SwsContext *c)
Definition: slice.c:252
Y , 14bpp, little-endian.
Definition: pixfmt.h:338
bayer, BGBG..(odd line), GRGR..(even line), 16-bit samples, big-endian
Definition: pixfmt.h:265
int16_t * hLumFilter
Array of horizontal filter coefficients for luma/alpha planes.
SwsContext * sws_alloc_context(void)
Allocate an empty SwsContext.
Definition: utils.c:1084
#define GY_IDX
#define AV_PIX_FMT_BGR565
Definition: pixfmt.h:389
#define SWS_SPLINE
Definition: swscale.h:68
#define AV_PIX_FMT_GBRP12
Definition: pixfmt.h:414
#define SWS_SINC
Definition: swscale.h:66
planar YUV 4:2:2 30bpp, (1 Cr & Cb sample per 2x1 Y & A samples, little-endian)
Definition: pixfmt.h:187
#define flags(name, subs,...)
Definition: cbs_av1.c:576
#define AV_PIX_FMT_YUV422P10
Definition: pixfmt.h:398
packed RGB 5:5:5, 16bpp, (msb)1X 5R 5G 5B(lsb), big-endian , X=unused/undefined
Definition: pixfmt.h:107
#define SWS_BITEXACT
Definition: swscale.h:84
bayer, RGRG..(odd line), GBGB..(even line), 16-bit samples, little-endian
Definition: pixfmt.h:266
Y , 10bpp, big-endian.
Definition: pixfmt.h:297
packed BGR 4:4:4, 16bpp, (msb)4X 4B 4G 4R(lsb), big-endian, X=unused/undefined
Definition: pixfmt.h:142
planar YUV 4:4:4, 27bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:163
planar YUV 4:4:4, 48bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:135
static int handle_xyz(enum AVPixelFormat *format)
Definition: utils.c:1065
#define FF_ALLOC_ARRAY_OR_GOTO(ctx, p, nelem, elsize, label)
Definition: internal.h:158
Definition: vc1_parser.c:48
SwsDither dither
uint8_t is_supported_in
Definition: utils.c:93
Y , 1bpp, 0 is black, 1 is white, in each byte pixels are ordered from the msb to the lsb...
Definition: pixfmt.h:76
void sws_addVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2212
#define INLINE_MMXEXT(flags)
Definition: cpu.h:87
int
static double sws_dcVec(SwsVector *a)
Definition: utils.c:2095
#define CONFIG_SWSCALE_ALPHA
Definition: config.h:558
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:66
planar YUV 4:2:2,24bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:247
Y , 8bpp.
Definition: pixfmt.h:74
double param[2]
Input parameters for scaling algorithms that need them.
#define exp2(x)
Definition: libm.h:288
Y , 1bpp, 0 is white, 1 is black, in each byte pixels are ordered from the msb to the lsb...
Definition: pixfmt.h:75
planar GBRA 4:4:4:4 32bpp
Definition: pixfmt.h:215
#define FF_ALLOC_OR_GOTO(ctx, p, size, label)
Definition: internal.h:140
IEEE-754 single precision planar GBRA 4:4:4:4, 128bpp, little-endian.
Definition: pixfmt.h:321
planar GBR 4:4:4 27bpp, little-endian
Definition: pixfmt.h:171
#define flag(name)
Definition: cbs_av1.c:568
static double c[64]
packed RGB 16:16:16, 48bpp, 16R, 16G, 16B, the 2-byte value for each R/G/B component is stored as big...
Definition: pixfmt.h:102
#define AV_WL16(p, v)
Definition: intreadwrite.h:412
enum AVPixelFormat srcFormat
Source pixel format.
planar YUV 4:2:2, 32bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:133
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
Definition: pixfmt.h:80
bayer, RGRG..(odd line), GBGB..(even line), 8-bit samples
Definition: pixfmt.h:261
packed RGB 3:3:2, 8bpp, (msb)2R 3G 3B(lsb)
Definition: pixfmt.h:86
static const uint64_t c2
Definition: murmur3.c:50
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)
Definition: pixfmt.h:73
#define XYZ_GAMMA
planar YUV 4:2:0 25bpp, (1 Cr & Cb sample per 2x2 Y & A samples, little-endian)
Definition: pixfmt.h:185
#define FFMPEG_CONFIGURATION
Definition: config.h:4
struct SwsContext * cascaded_context[3]
#define SWS_PARAM_DEFAULT
Definition: swscale.h:73
#define SWS_FULL_CHR_H_INP
Definition: swscale.h:81
uint16_t * gamma
IEEE-754 single precision planar GBRA 4:4:4:4, 128bpp, big-endian.
Definition: pixfmt.h:320
SwsFunc swscale
Note that src, dst, srcStride, dstStride will be copied in the sws_scale() wrapper so they can be fre...
static av_always_inline int diff(const uint32_t a, const uint32_t b)
packed XYZ 4:4:4, 36 bpp, (msb) 12X, 12Y, 12Z (lsb), the 2-byte value for each X/Y/Z is stored as lit...
Definition: pixfmt.h:199
#define av_free(p)
int size_factor
size factor used when initing the filters
Definition: utils.c:319
planar YUV 4:4:4,42bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:253
int srcFormatBpp
Number of bits per pixel of the source pixel format.
Y , 14bpp, big-endian.
Definition: pixfmt.h:337
const AVClass ff_sws_context_class
Definition: options.c:87
Y , 16bpp, little-endian.
Definition: pixfmt.h:98
uint8_t is_supported_endianness
Definition: utils.c:95
static const double coeff[2][5]
Definition: vf_owdenoise.c:72
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples) full scale (JPEG), deprecated in favor ...
Definition: pixfmt.h:258
#define lrint
Definition: tablegen.h:53
16 bits gray, 16 bits alpha (little-endian)
Definition: pixfmt.h:213
int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
Return a positive value if pix_fmt is a supported input format, 0 otherwise.
Definition: utils.c:276
SwsVector * sws_getIdentityVec(void)
Allocate and return a vector with just one coefficient, with value 1.0.
Definition: utils.c:2090
planar YUV 4:2:2 30bpp, (1 Cr & Cb sample per 2x1 Y & A samples, big-endian)
Definition: pixfmt.h:186
Y , 12bpp, big-endian.
Definition: pixfmt.h:295
static int height
Definition: utils.c:158
int32_t input_rgb2yuv_table[16+40 *4]
packed BGR 5:5:5, 16bpp, (msb)1X 5B 5G 5R(lsb), big-endian , X=unused/undefined
Definition: pixfmt.h:112
int16_t * vLumFilter
Array of vertical filter coefficients for luma/alpha planes.
#define av_freep(p)
#define GU_IDX
planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)
Definition: pixfmt.h:99
#define M_PI
Definition: mathematics.h:52
planar GBR 4:4:4 48bpp, little-endian
Definition: pixfmt.h:175
static void makenan_vec(SwsVector *a)
Definition: utils.c:1929
int16_t * hChrFilter
Array of horizontal filter coefficients for chroma planes.
#define av_malloc_array(a, b)
packed BGR 4:4:4, 16bpp, (msb)4X 4B 4G 4R(lsb), little-endian, X=unused/undefined ...
Definition: pixfmt.h:141
const char * av_get_pix_fmt_name(enum AVPixelFormat pix_fmt)
Return the short name for a pixel format, NULL in case pix_fmt is unknown.
Definition: pixdesc.c:2465
planar YUV 4:2:2 27bpp, (1 Cr & Cb sample per 2x1 Y & A samples), little-endian
Definition: pixfmt.h:181
#define BY_IDX
int chrDstHSubSample
Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in destination...
int chrSrcW
Width of source chroma planes.
static av_always_inline int isFloat(enum AVPixelFormat pix_fmt)
int depth
Number of bits in the component.
Definition: pixdesc.h:58
IEEE-754 single precision Y, 32bpp, little-endian.
Definition: pixfmt.h:341
void ff_get_unscaled_swscale(SwsContext *c)
Set c->swscale to an unscaled converter if one exists for the specific source and destination formats...
planar GBRA 4:4:4:4 64bpp, little-endian
Definition: pixfmt.h:217
packed RGB 8:8:8, 32bpp, XRGBXRGB... X=unused/undefined
Definition: pixfmt.h:237
int srcW
Width of source luma/alpha planes.
packed YUV 4:1:1, 12bpp, Cb Y0 Y1 Cr Y2 Y3
Definition: pixfmt.h:82
static void fill_xyztables(struct SwsContext *c)
Definition: utils.c:827
float min
int chrSrcVSubSample
Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in source image...
int flags
Flags passed by the user to select scaler algorithm, optimizations, subsampling, etc...
AVPixelFormat
Pixel format.
Definition: pixfmt.h:64
planar YUV 4:2:0,18bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
Definition: pixfmt.h:242
void(* rgb15to16)(const uint8_t *src, uint8_t *dst, int src_size)
Definition: rgb2rgb.c:51
#define AV_PIX_FMT_YUV422P16
Definition: pixfmt.h:409
#define BU_IDX
planar YUV 4:4:4, 30bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:164
for(j=16;j >0;--j)
planar YUV 4:2:2,24bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:246
static av_always_inline int isNBPS(enum AVPixelFormat pix_fmt)
#define FF_ALLOCZ_OR_GOTO(ctx, p, size, label)
Definition: internal.h:149
planar GBR 4:4:4 30bpp, little-endian
Definition: pixfmt.h:173
static SwsVector * sws_getConvVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2120
packed RGBA 16:16:16:16, 64bpp, 16R, 16G, 16B, 16A, the 2-byte value for each R/G/B/A component is st...
Definition: pixfmt.h:206
#define HAVE_MMX
Definition: config.h:63
#define LIBSWSCALE_VERSION_INT
Definition: version.h:33
packed AYUV 4:4:4,64bpp (1 Cr & Cb sample per 1x1 Y & A samples), little-endian
Definition: pixfmt.h:279
#define V
Definition: avdct.c:30
#define AV_CEIL_RSHIFT(a, b)
Definition: common.h:58
planar YUV 4:2:2,24bpp, (1 Cr & Cb sample per 2x1 Y samples), 12b alpha, big-endian ...
Definition: pixfmt.h:343
planar YUV 4:2:2, 20bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:160
const char * swscale_license(void)
Return the libswscale license.
Definition: utils.c:86