FFmpeg  4.3.9
aacsbr_template.c
Go to the documentation of this file.
1 /*
2  * AAC Spectral Band Replication decoding functions
3  * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
4  * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
5  *
6  * Fixed point code
7  * Copyright (c) 2013
8  * MIPS Technologies, Inc., California.
9  *
10  * This file is part of FFmpeg.
11  *
12  * FFmpeg is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU Lesser General Public
14  * License as published by the Free Software Foundation; either
15  * version 2.1 of the License, or (at your option) any later version.
16  *
17  * FFmpeg is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20  * Lesser General Public License for more details.
21  *
22  * You should have received a copy of the GNU Lesser General Public
23  * License along with FFmpeg; if not, write to the Free Software
24  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
25  */
26 
27 /**
28  * @file
29  * AAC Spectral Band Replication decoding functions
30  * @author Robert Swain ( rob opendot cl )
31  * @author Stanislav Ocovaj ( stanislav.ocovaj@imgtec.com )
32  * @author Zoran Basaric ( zoran.basaric@imgtec.com )
33  */
34 
35 #include "libavutil/qsort.h"
36 
37 static av_cold void aacsbr_tableinit(void)
38 {
39  int n;
40  for (n = 1; n < 320; n++)
41  sbr_qmf_window_us[320 + n] = sbr_qmf_window_us[320 - n];
44 
45  for (n = 0; n < 320; n++)
47 }
48 
50 {
51  static const struct {
52  const void *sbr_codes, *sbr_bits;
53  const unsigned int table_size, elem_size;
54  } sbr_tmp[] = {
55  SBR_VLC_ROW(t_huffman_env_1_5dB),
56  SBR_VLC_ROW(f_huffman_env_1_5dB),
57  SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
58  SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
59  SBR_VLC_ROW(t_huffman_env_3_0dB),
60  SBR_VLC_ROW(f_huffman_env_3_0dB),
61  SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
62  SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
63  SBR_VLC_ROW(t_huffman_noise_3_0dB),
64  SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
65  };
66 
67  // SBR VLC table initialization
68  SBR_INIT_VLC_STATIC(0, 1098);
69  SBR_INIT_VLC_STATIC(1, 1092);
70  SBR_INIT_VLC_STATIC(2, 768);
71  SBR_INIT_VLC_STATIC(3, 1026);
72  SBR_INIT_VLC_STATIC(4, 1058);
73  SBR_INIT_VLC_STATIC(5, 1052);
74  SBR_INIT_VLC_STATIC(6, 544);
75  SBR_INIT_VLC_STATIC(7, 544);
76  SBR_INIT_VLC_STATIC(8, 592);
77  SBR_INIT_VLC_STATIC(9, 512);
78 
80 
82 }
83 
84 /** Places SBR in pure upsampling mode. */
86  sbr->start = 0;
87  sbr->ready_for_dequant = 0;
88  // Init defults used in pure upsampling mode
89  sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
90  sbr->m[1] = 0;
91  // Reset values for first SBR header
92  sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1;
93  memset(&sbr->spectrum_params, -1, sizeof(SpectrumParameters));
94 }
95 
97 {
98  if(sbr->mdct.mdct_bits)
99  return;
100  sbr->kx[0] = sbr->kx[1];
101  sbr->id_aac = id_aac;
102  sbr_turnoff(sbr);
103  sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
104  sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
105  /* SBR requires samples to be scaled to +/-32768.0 to work correctly.
106  * mdct scale factors are adjusted to scale up from +/-1.0 at analysis
107  * and scale back down at synthesis. */
108  AAC_RENAME_32(ff_mdct_init)(&sbr->mdct, 7, 1, 1.0 / (64 * 32768.0));
109  AAC_RENAME_32(ff_mdct_init)(&sbr->mdct_ana, 7, 1, -2.0 * 32768.0);
110  AAC_RENAME(ff_ps_ctx_init)(&sbr->ps);
111  AAC_RENAME(ff_sbrdsp_init)(&sbr->dsp);
112  aacsbr_func_ptr_init(&sbr->c);
113 }
114 
116 {
117  AAC_RENAME_32(ff_mdct_end)(&sbr->mdct);
118  AAC_RENAME_32(ff_mdct_end)(&sbr->mdct_ana);
119 }
120 
121 static int qsort_comparison_function_int16(const void *a, const void *b)
122 {
123  return *(const int16_t *)a - *(const int16_t *)b;
124 }
125 
126 static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
127 {
128  int i;
129  for (i = 0; i <= last_el; i++)
130  if (table[i] == needle)
131  return 1;
132  return 0;
133 }
134 
135 /// Limiter Frequency Band Table (14496-3 sp04 p198)
137 {
138  int k;
139  if (sbr->bs_limiter_bands > 0) {
140  static const INTFLOAT bands_warped[3] = { Q23(1.32715174233856803909f), //2^(0.49/1.2)
141  Q23(1.18509277094158210129f), //2^(0.49/2)
142  Q23(1.11987160404675912501f) }; //2^(0.49/3)
143  const INTFLOAT lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
144  int16_t patch_borders[7];
145  uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
146 
147  patch_borders[0] = sbr->kx[1];
148  for (k = 1; k <= sbr->num_patches; k++)
149  patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
150 
151  memcpy(sbr->f_tablelim, sbr->f_tablelow,
152  (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
153  if (sbr->num_patches > 1)
154  memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
155  (sbr->num_patches - 1) * sizeof(patch_borders[0]));
156 
157  AV_QSORT(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
158  uint16_t,
160 
161  sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
162  while (out < sbr->f_tablelim + sbr->n_lim) {
163 #if USE_FIXED
164  if ((*in << 23) >= *out * lim_bands_per_octave_warped) {
165 #else
166  if (*in >= *out * lim_bands_per_octave_warped) {
167 #endif /* USE_FIXED */
168  *++out = *in++;
169  } else if (*in == *out ||
170  !in_table_int16(patch_borders, sbr->num_patches, *in)) {
171  in++;
172  sbr->n_lim--;
173  } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
174  *out = *in++;
175  sbr->n_lim--;
176  } else {
177  *++out = *in++;
178  }
179  }
180  } else {
181  sbr->f_tablelim[0] = sbr->f_tablelow[0];
182  sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
183  sbr->n_lim = 1;
184  }
185 }
186 
188 {
189  unsigned int cnt = get_bits_count(gb);
190  uint8_t bs_header_extra_1;
191  uint8_t bs_header_extra_2;
192  int old_bs_limiter_bands = sbr->bs_limiter_bands;
193  SpectrumParameters old_spectrum_params;
194 
195  sbr->start = 1;
196  sbr->ready_for_dequant = 0;
197 
198  // Save last spectrum parameters variables to compare to new ones
199  memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
200 
201  sbr->bs_amp_res_header = get_bits1(gb);
202  sbr->spectrum_params.bs_start_freq = get_bits(gb, 4);
203  sbr->spectrum_params.bs_stop_freq = get_bits(gb, 4);
204  sbr->spectrum_params.bs_xover_band = get_bits(gb, 3);
205  skip_bits(gb, 2); // bs_reserved
206 
207  bs_header_extra_1 = get_bits1(gb);
208  bs_header_extra_2 = get_bits1(gb);
209 
210  if (bs_header_extra_1) {
211  sbr->spectrum_params.bs_freq_scale = get_bits(gb, 2);
214  } else {
218  }
219 
220  // Check if spectrum parameters changed
221  if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
222  sbr->reset = 1;
223 
224  if (bs_header_extra_2) {
225  sbr->bs_limiter_bands = get_bits(gb, 2);
226  sbr->bs_limiter_gains = get_bits(gb, 2);
227  sbr->bs_interpol_freq = get_bits1(gb);
228  sbr->bs_smoothing_mode = get_bits1(gb);
229  } else {
230  sbr->bs_limiter_bands = 2;
231  sbr->bs_limiter_gains = 2;
232  sbr->bs_interpol_freq = 1;
233  sbr->bs_smoothing_mode = 1;
234  }
235 
236  if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
237  sbr_make_f_tablelim(sbr);
238 
239  return get_bits_count(gb) - cnt;
240 }
241 
242 static int array_min_int16(const int16_t *array, int nel)
243 {
244  int i, min = array[0];
245  for (i = 1; i < nel; i++)
246  min = FFMIN(array[i], min);
247  return min;
248 }
249 
250 static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
251 {
252  // Requirements (14496-3 sp04 p205)
253  if (n_master <= 0) {
254  av_log(avctx, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
255  return -1;
256  }
257  if (bs_xover_band >= n_master) {
258  av_log(avctx, AV_LOG_ERROR,
259  "Invalid bitstream, crossover band index beyond array bounds: %d\n",
260  bs_xover_band);
261  return -1;
262  }
263  return 0;
264 }
265 
266 /// Master Frequency Band Table (14496-3 sp04 p194)
268  SpectrumParameters *spectrum)
269 {
270  unsigned int temp, max_qmf_subbands = 0;
271  unsigned int start_min, stop_min;
272  int k;
273  const int8_t *sbr_offset_ptr;
274  int16_t stop_dk[13];
275 
276  switch (sbr->sample_rate) {
277  case 16000:
278  sbr_offset_ptr = sbr_offset[0];
279  break;
280  case 22050:
281  sbr_offset_ptr = sbr_offset[1];
282  break;
283  case 24000:
284  sbr_offset_ptr = sbr_offset[2];
285  break;
286  case 32000:
287  sbr_offset_ptr = sbr_offset[3];
288  break;
289  case 44100: case 48000: case 64000:
290  sbr_offset_ptr = sbr_offset[4];
291  break;
292  case 88200: case 96000: case 128000: case 176400: case 192000:
293  sbr_offset_ptr = sbr_offset[5];
294  break;
295  default:
297  "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
298  return -1;
299  }
300 
301  if (sbr->sample_rate < 32000) {
302  temp = 3000;
303  } else if (sbr->sample_rate < 64000) {
304  temp = 4000;
305  } else
306  temp = 5000;
307 
308  start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
309  stop_min = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
310 
311  sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
312 
313  if (spectrum->bs_stop_freq < 14) {
314  sbr->k[2] = stop_min;
315  make_bands(stop_dk, stop_min, 64, 13);
316  AV_QSORT(stop_dk, 13, int16_t, qsort_comparison_function_int16);
317  for (k = 0; k < spectrum->bs_stop_freq; k++)
318  sbr->k[2] += stop_dk[k];
319  } else if (spectrum->bs_stop_freq == 14) {
320  sbr->k[2] = 2*sbr->k[0];
321  } else if (spectrum->bs_stop_freq == 15) {
322  sbr->k[2] = 3*sbr->k[0];
323  } else {
325  "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
326  return -1;
327  }
328  sbr->k[2] = FFMIN(64, sbr->k[2]);
329 
330  // Requirements (14496-3 sp04 p205)
331  if (sbr->sample_rate <= 32000) {
332  max_qmf_subbands = 48;
333  } else if (sbr->sample_rate == 44100) {
334  max_qmf_subbands = 35;
335  } else if (sbr->sample_rate >= 48000)
336  max_qmf_subbands = 32;
337  else
338  av_assert0(0);
339 
340  if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
342  "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
343  return -1;
344  }
345 
346  if (!spectrum->bs_freq_scale) {
347  int dk, k2diff;
348 
349  dk = spectrum->bs_alter_scale + 1;
350  sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
352  return -1;
353 
354  for (k = 1; k <= sbr->n_master; k++)
355  sbr->f_master[k] = dk;
356 
357  k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
358  if (k2diff < 0) {
359  sbr->f_master[1]--;
360  sbr->f_master[2]-= (k2diff < -1);
361  } else if (k2diff) {
362  sbr->f_master[sbr->n_master]++;
363  }
364 
365  sbr->f_master[0] = sbr->k[0];
366  for (k = 1; k <= sbr->n_master; k++)
367  sbr->f_master[k] += sbr->f_master[k - 1];
368 
369  } else {
370  int half_bands = 7 - spectrum->bs_freq_scale; // bs_freq_scale = {1,2,3}
371  int two_regions, num_bands_0;
372  int vdk0_max, vdk1_min;
373  int16_t vk0[49];
374 #if USE_FIXED
375  int tmp, nz = 0;
376 #endif /* USE_FIXED */
377 
378  if (49 * sbr->k[2] > 110 * sbr->k[0]) {
379  two_regions = 1;
380  sbr->k[1] = 2 * sbr->k[0];
381  } else {
382  two_regions = 0;
383  sbr->k[1] = sbr->k[2];
384  }
385 
386 #if USE_FIXED
387  tmp = (sbr->k[1] << 23) / sbr->k[0];
388  while (tmp < 0x40000000) {
389  tmp <<= 1;
390  nz++;
391  }
392  tmp = fixed_log(tmp - 0x80000000);
393  tmp = (int)(((int64_t)tmp * CONST_RECIP_LN2 + 0x20000000) >> 30);
394  tmp = (((tmp + 0x80) >> 8) + ((8 - nz) << 23)) * half_bands;
395  num_bands_0 = ((tmp + 0x400000) >> 23) * 2;
396 #else
397  num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
398 #endif /* USE_FIXED */
399 
400  if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
401  av_log(ac->avctx, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
402  return -1;
403  }
404 
405  vk0[0] = 0;
406 
407  make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
408 
409  AV_QSORT(vk0 + 1, num_bands_0, int16_t, qsort_comparison_function_int16);
410  vdk0_max = vk0[num_bands_0];
411 
412  vk0[0] = sbr->k[0];
413  for (k = 1; k <= num_bands_0; k++) {
414  if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
415  av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
416  return -1;
417  }
418  vk0[k] += vk0[k-1];
419  }
420 
421  if (two_regions) {
422  int16_t vk1[49];
423 #if USE_FIXED
424  int num_bands_1;
425 
426  tmp = (sbr->k[2] << 23) / sbr->k[1];
427  nz = 0;
428  while (tmp < 0x40000000) {
429  tmp <<= 1;
430  nz++;
431  }
432  tmp = fixed_log(tmp - 0x80000000);
433  tmp = (int)(((int64_t)tmp * CONST_RECIP_LN2 + 0x20000000) >> 30);
434  tmp = (((tmp + 0x80) >> 8) + ((8 - nz) << 23)) * half_bands;
435  if (spectrum->bs_alter_scale)
436  tmp = (int)(((int64_t)tmp * CONST_076923 + 0x40000000) >> 31);
437  num_bands_1 = ((tmp + 0x400000) >> 23) * 2;
438 #else
439  float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
440  : 1.0f; // bs_alter_scale = {0,1}
441  int num_bands_1 = lrintf(half_bands * invwarp *
442  log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
443 #endif /* USE_FIXED */
444  make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
445 
446  vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
447 
448  if (vdk1_min < vdk0_max) {
449  int change;
450  AV_QSORT(vk1 + 1, num_bands_1, int16_t, qsort_comparison_function_int16);
451  change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
452  vk1[1] += change;
453  vk1[num_bands_1] -= change;
454  }
455 
456  AV_QSORT(vk1 + 1, num_bands_1, int16_t, qsort_comparison_function_int16);
457 
458  vk1[0] = sbr->k[1];
459  for (k = 1; k <= num_bands_1; k++) {
460  if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
461  av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
462  return -1;
463  }
464  vk1[k] += vk1[k-1];
465  }
466 
467  sbr->n_master = num_bands_0 + num_bands_1;
469  return -1;
470  memcpy(&sbr->f_master[0], vk0,
471  (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
472  memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
473  num_bands_1 * sizeof(sbr->f_master[0]));
474 
475  } else {
476  sbr->n_master = num_bands_0;
478  return -1;
479  memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
480  }
481  }
482 
483  return 0;
484 }
485 
486 /// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
488 {
489  int i, k, last_k = -1, last_msb = -1, sb = 0;
490  int msb = sbr->k[0];
491  int usb = sbr->kx[1];
492  int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
493 
494  sbr->num_patches = 0;
495 
496  if (goal_sb < sbr->kx[1] + sbr->m[1]) {
497  for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
498  } else
499  k = sbr->n_master;
500 
501  do {
502  int odd = 0;
503  if (k == last_k && msb == last_msb) {
504  av_log(ac->avctx, AV_LOG_ERROR, "patch construction failed\n");
505  return AVERROR_INVALIDDATA;
506  }
507  last_k = k;
508  last_msb = msb;
509  for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
510  sb = sbr->f_master[i];
511  odd = (sb + sbr->k[0]) & 1;
512  }
513 
514  // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5.
515  // After this check the final number of patches can still be six which is
516  // illegal however the Coding Technologies decoder check stream has a final
517  // count of 6 patches
518  if (sbr->num_patches > 5) {
519  av_log(ac->avctx, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
520  return -1;
521  }
522 
523  sbr->patch_num_subbands[sbr->num_patches] = FFMAX(sb - usb, 0);
524  sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
525 
526  if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
527  usb = sb;
528  msb = sb;
529  sbr->num_patches++;
530  } else
531  msb = sbr->kx[1];
532 
533  if (sbr->f_master[k] - sb < 3)
534  k = sbr->n_master;
535  } while (sb != sbr->kx[1] + sbr->m[1]);
536 
537  if (sbr->num_patches > 1 &&
538  sbr->patch_num_subbands[sbr->num_patches - 1] < 3)
539  sbr->num_patches--;
540 
541  return 0;
542 }
543 
544 /// Derived Frequency Band Tables (14496-3 sp04 p197)
546 {
547  int k, temp;
548 #if USE_FIXED
549  int nz = 0;
550 #endif /* USE_FIXED */
551 
552  sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
553  sbr->n[0] = (sbr->n[1] + 1) >> 1;
554 
555  memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
556  (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
557  sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
558  sbr->kx[1] = sbr->f_tablehigh[0];
559 
560  // Requirements (14496-3 sp04 p205)
561  if (sbr->kx[1] + sbr->m[1] > 64) {
563  "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
564  return -1;
565  }
566  if (sbr->kx[1] > 32) {
567  av_log(ac->avctx, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
568  return -1;
569  }
570 
571  sbr->f_tablelow[0] = sbr->f_tablehigh[0];
572  temp = sbr->n[1] & 1;
573  for (k = 1; k <= sbr->n[0]; k++)
574  sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
575 #if USE_FIXED
576  temp = (sbr->k[2] << 23) / sbr->kx[1];
577  while (temp < 0x40000000) {
578  temp <<= 1;
579  nz++;
580  }
581  temp = fixed_log(temp - 0x80000000);
582  temp = (int)(((int64_t)temp * CONST_RECIP_LN2 + 0x20000000) >> 30);
583  temp = (((temp + 0x80) >> 8) + ((8 - nz) << 23)) * sbr->spectrum_params.bs_noise_bands;
584 
585  sbr->n_q = (temp + 0x400000) >> 23;
586  if (sbr->n_q < 1)
587  sbr->n_q = 1;
588 #else
590  log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
591 #endif /* USE_FIXED */
592 
593  if (sbr->n_q > 5) {
594  av_log(ac->avctx, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
595  sbr->n_q = 1;
596  return -1;
597  }
598 
599  sbr->f_tablenoise[0] = sbr->f_tablelow[0];
600  temp = 0;
601  for (k = 1; k <= sbr->n_q; k++) {
602  temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
603  sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
604  }
605 
606  if (sbr_hf_calc_npatches(ac, sbr) < 0)
607  return -1;
608 
609  sbr_make_f_tablelim(sbr);
610 
611  sbr->data[0].f_indexnoise = 0;
612  sbr->data[1].f_indexnoise = 0;
613 
614  return 0;
615 }
616 
618  int elements)
619 {
620  int i;
621  for (i = 0; i < elements; i++) {
622  vec[i] = get_bits1(gb);
623  }
624 }
625 
626 /** ceil(log2(index+1)) */
627 static const int8_t ceil_log2[] = {
628  0, 1, 2, 2, 3, 3,
629 };
630 
632  GetBitContext *gb, SBRData *ch_data)
633 {
634  int i;
635  int bs_pointer = 0;
636  // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
637  int abs_bord_trail = 16;
638  int num_rel_lead, num_rel_trail;
639  unsigned bs_num_env_old = ch_data->bs_num_env;
640  int bs_frame_class, bs_num_env;
641 
642  ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env];
643  ch_data->bs_amp_res = sbr->bs_amp_res_header;
644  ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old];
645 
646  switch (bs_frame_class = get_bits(gb, 2)) {
647  case FIXFIX:
648  bs_num_env = 1 << get_bits(gb, 2);
649  if (bs_num_env > 4) {
651  "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
652  bs_num_env);
653  return -1;
654  }
655  ch_data->bs_num_env = bs_num_env;
656  num_rel_lead = ch_data->bs_num_env - 1;
657  if (ch_data->bs_num_env == 1)
658  ch_data->bs_amp_res = 0;
659 
660 
661  ch_data->t_env[0] = 0;
662  ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
663 
664  abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) /
665  ch_data->bs_num_env;
666  for (i = 0; i < num_rel_lead; i++)
667  ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail;
668 
669  ch_data->bs_freq_res[1] = get_bits1(gb);
670  for (i = 1; i < ch_data->bs_num_env; i++)
671  ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
672  break;
673  case FIXVAR:
674  abs_bord_trail += get_bits(gb, 2);
675  num_rel_trail = get_bits(gb, 2);
676  ch_data->bs_num_env = num_rel_trail + 1;
677  ch_data->t_env[0] = 0;
678  ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
679 
680  for (i = 0; i < num_rel_trail; i++)
681  ch_data->t_env[ch_data->bs_num_env - 1 - i] =
682  ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
683 
684  bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
685 
686  for (i = 0; i < ch_data->bs_num_env; i++)
687  ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb);
688  break;
689  case VARFIX:
690  ch_data->t_env[0] = get_bits(gb, 2);
691  num_rel_lead = get_bits(gb, 2);
692  ch_data->bs_num_env = num_rel_lead + 1;
693  ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
694 
695  for (i = 0; i < num_rel_lead; i++)
696  ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
697 
698  bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
699 
700  get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
701  break;
702  case VARVAR:
703  ch_data->t_env[0] = get_bits(gb, 2);
704  abs_bord_trail += get_bits(gb, 2);
705  num_rel_lead = get_bits(gb, 2);
706  num_rel_trail = get_bits(gb, 2);
707  bs_num_env = num_rel_lead + num_rel_trail + 1;
708 
709  if (bs_num_env > 5) {
711  "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
712  bs_num_env);
713  return -1;
714  }
715  ch_data->bs_num_env = bs_num_env;
716 
717  ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
718 
719  for (i = 0; i < num_rel_lead; i++)
720  ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
721  for (i = 0; i < num_rel_trail; i++)
722  ch_data->t_env[ch_data->bs_num_env - 1 - i] =
723  ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
724 
725  bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
726 
727  get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
728  break;
729  }
730  ch_data->bs_frame_class = bs_frame_class;
731 
732  av_assert0(bs_pointer >= 0);
733  if (bs_pointer > ch_data->bs_num_env + 1) {
735  "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
736  bs_pointer);
737  return -1;
738  }
739 
740  for (i = 1; i <= ch_data->bs_num_env; i++) {
741  if (ch_data->t_env[i-1] >= ch_data->t_env[i]) {
742  av_log(ac->avctx, AV_LOG_ERROR, "Not strictly monotone time borders\n");
743  return -1;
744  }
745  }
746 
747  ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1;
748 
749  ch_data->t_q[0] = ch_data->t_env[0];
750  ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env];
751  if (ch_data->bs_num_noise > 1) {
752  int idx;
753  if (ch_data->bs_frame_class == FIXFIX) {
754  idx = ch_data->bs_num_env >> 1;
755  } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
756  idx = ch_data->bs_num_env - FFMAX(bs_pointer - 1, 1);
757  } else { // VARFIX
758  if (!bs_pointer)
759  idx = 1;
760  else if (bs_pointer == 1)
761  idx = ch_data->bs_num_env - 1;
762  else // bs_pointer > 1
763  idx = bs_pointer - 1;
764  }
765  ch_data->t_q[1] = ch_data->t_env[idx];
766  }
767 
768  ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old); // l_APrev
769  ch_data->e_a[1] = -1;
770  if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
771  ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer;
772  } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1
773  ch_data->e_a[1] = bs_pointer - 1;
774 
775  return 0;
776 }
777 
778 static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
779  //These variables are saved from the previous frame rather than copied
780  dst->bs_freq_res[0] = dst->bs_freq_res[dst->bs_num_env];
781  dst->t_env_num_env_old = dst->t_env[dst->bs_num_env];
782  dst->e_a[0] = -(dst->e_a[1] != dst->bs_num_env);
783 
784  //These variables are read from the bitstream and therefore copied
785  memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
786  memcpy(dst->t_env, src->t_env, sizeof(dst->t_env));
787  memcpy(dst->t_q, src->t_q, sizeof(dst->t_q));
788  dst->bs_num_env = src->bs_num_env;
789  dst->bs_amp_res = src->bs_amp_res;
790  dst->bs_num_noise = src->bs_num_noise;
791  dst->bs_frame_class = src->bs_frame_class;
792  dst->e_a[1] = src->e_a[1];
793 }
794 
795 /// Read how the envelope and noise floor data is delta coded
797  SBRData *ch_data)
798 {
799  get_bits1_vector(gb, ch_data->bs_df_env, ch_data->bs_num_env);
800  get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
801 }
802 
803 /// Read inverse filtering data
805  SBRData *ch_data)
806 {
807  int i;
808 
809  memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
810  for (i = 0; i < sbr->n_q; i++)
811  ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
812 }
813 
815  SBRData *ch_data, int ch)
816 {
817  int bits;
818  int i, j, k;
819  VLC_TYPE (*t_huff)[2], (*f_huff)[2];
820  int t_lav, f_lav;
821  const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
822  const int odd = sbr->n[1] & 1;
823 
824  if (sbr->bs_coupling && ch) {
825  if (ch_data->bs_amp_res) {
826  bits = 5;
831  } else {
832  bits = 6;
837  }
838  } else {
839  if (ch_data->bs_amp_res) {
840  bits = 6;
845  } else {
846  bits = 7;
851  }
852  }
853 
854  for (i = 0; i < ch_data->bs_num_env; i++) {
855  if (ch_data->bs_df_env[i]) {
856  // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame
857  if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
858  for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
859  ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
860  if (ch_data->env_facs_q[i + 1][j] > 127U) {
861  av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
862  return AVERROR_INVALIDDATA;
863  }
864  }
865  } else if (ch_data->bs_freq_res[i + 1]) {
866  for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
867  k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
868  ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
869  if (ch_data->env_facs_q[i + 1][j] > 127U) {
870  av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
871  return AVERROR_INVALIDDATA;
872  }
873  }
874  } else {
875  for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
876  k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
877  ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
878  if (ch_data->env_facs_q[i + 1][j] > 127U) {
879  av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
880  return AVERROR_INVALIDDATA;
881  }
882  }
883  }
884  } else {
885  ch_data->env_facs_q[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
886  for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
887  ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
888  if (ch_data->env_facs_q[i + 1][j] > 127U) {
889  av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
890  return AVERROR_INVALIDDATA;
891  }
892  }
893  }
894  }
895 
896  //assign 0th elements of env_facs_q from last elements
897  memcpy(ch_data->env_facs_q[0], ch_data->env_facs_q[ch_data->bs_num_env],
898  sizeof(ch_data->env_facs_q[0]));
899 
900  return 0;
901 }
902 
904  SBRData *ch_data, int ch)
905 {
906  int i, j;
907  VLC_TYPE (*t_huff)[2], (*f_huff)[2];
908  int t_lav, f_lav;
909  int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
910 
911  if (sbr->bs_coupling && ch) {
916  } else {
921  }
922 
923  for (i = 0; i < ch_data->bs_num_noise; i++) {
924  if (ch_data->bs_df_noise[i]) {
925  for (j = 0; j < sbr->n_q; j++) {
926  ch_data->noise_facs_q[i + 1][j] = ch_data->noise_facs_q[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
927  if (ch_data->noise_facs_q[i + 1][j] > 30U) {
928  av_log(ac->avctx, AV_LOG_ERROR, "noise_facs_q %d is invalid\n", ch_data->noise_facs_q[i + 1][j]);
929  return AVERROR_INVALIDDATA;
930  }
931  }
932  } else {
933  ch_data->noise_facs_q[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
934  for (j = 1; j < sbr->n_q; j++) {
935  ch_data->noise_facs_q[i + 1][j] = ch_data->noise_facs_q[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
936  if (ch_data->noise_facs_q[i + 1][j] > 30U) {
937  av_log(ac->avctx, AV_LOG_ERROR, "noise_facs_q %d is invalid\n", ch_data->noise_facs_q[i + 1][j]);
938  return AVERROR_INVALIDDATA;
939  }
940  }
941  }
942  }
943 
944  //assign 0th elements of noise_facs_q from last elements
945  memcpy(ch_data->noise_facs_q[0], ch_data->noise_facs_q[ch_data->bs_num_noise],
946  sizeof(ch_data->noise_facs_q[0]));
947  return 0;
948 }
949 
951  GetBitContext *gb,
952  int bs_extension_id, int *num_bits_left)
953 {
954  switch (bs_extension_id) {
955  case EXTENSION_ID_PS:
956  if (!ac->oc[1].m4ac.ps) {
957  av_log(ac->avctx, AV_LOG_ERROR, "Parametric Stereo signaled to be not-present but was found in the bitstream.\n");
958  skip_bits_long(gb, *num_bits_left); // bs_fill_bits
959  *num_bits_left = 0;
960  } else {
961  *num_bits_left -= AAC_RENAME(ff_ps_read_data)(ac->avctx, gb, &sbr->ps, *num_bits_left);
963  }
964  break;
965  default:
966  // some files contain 0-padding
967  if (bs_extension_id || *num_bits_left > 16 || show_bits(gb, *num_bits_left))
968  avpriv_request_sample(ac->avctx, "Reserved SBR extensions");
969  skip_bits_long(gb, *num_bits_left); // bs_fill_bits
970  *num_bits_left = 0;
971  break;
972  }
973 }
974 
977  GetBitContext *gb)
978 {
979  int ret;
980 
981  if (get_bits1(gb)) // bs_data_extra
982  skip_bits(gb, 4); // bs_reserved
983 
984  if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
985  return -1;
986  read_sbr_dtdf(sbr, gb, &sbr->data[0]);
987  read_sbr_invf(sbr, gb, &sbr->data[0]);
988  if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[0], 0)) < 0)
989  return ret;
990  if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[0], 0)) < 0)
991  return ret;
992 
993  if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
994  get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
995 
996  return 0;
997 }
998 
1001  GetBitContext *gb)
1002 {
1003  int ret;
1004 
1005  if (get_bits1(gb)) // bs_data_extra
1006  skip_bits(gb, 8); // bs_reserved
1007 
1008  if ((sbr->bs_coupling = get_bits1(gb))) {
1009  if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
1010  return -1;
1011  copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
1012  read_sbr_dtdf(sbr, gb, &sbr->data[0]);
1013  read_sbr_dtdf(sbr, gb, &sbr->data[1]);
1014  read_sbr_invf(sbr, gb, &sbr->data[0]);
1015  memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
1016  memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
1017  if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[0], 0)) < 0)
1018  return ret;
1019  if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[0], 0)) < 0)
1020  return ret;
1021  if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[1], 1)) < 0)
1022  return ret;
1023  if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[1], 1)) < 0)
1024  return ret;
1025  } else {
1026  if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
1027  read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
1028  return -1;
1029  read_sbr_dtdf(sbr, gb, &sbr->data[0]);
1030  read_sbr_dtdf(sbr, gb, &sbr->data[1]);
1031  read_sbr_invf(sbr, gb, &sbr->data[0]);
1032  read_sbr_invf(sbr, gb, &sbr->data[1]);
1033  if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[0], 0)) < 0)
1034  return ret;
1035  if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[1], 1)) < 0)
1036  return ret;
1037  if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[0], 0)) < 0)
1038  return ret;
1039  if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[1], 1)) < 0)
1040  return ret;
1041  }
1042 
1043  if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
1044  get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
1045  if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
1046  get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
1047 
1048  return 0;
1049 }
1050 
1051 static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
1052  GetBitContext *gb, int id_aac)
1053 {
1054  unsigned int cnt = get_bits_count(gb);
1055 
1056  sbr->id_aac = id_aac;
1057  sbr->ready_for_dequant = 1;
1058 
1059  if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
1060  if (read_sbr_single_channel_element(ac, sbr, gb)) {
1061  sbr_turnoff(sbr);
1062  return get_bits_count(gb) - cnt;
1063  }
1064  } else if (id_aac == TYPE_CPE) {
1065  if (read_sbr_channel_pair_element(ac, sbr, gb)) {
1066  sbr_turnoff(sbr);
1067  return get_bits_count(gb) - cnt;
1068  }
1069  } else {
1070  av_log(ac->avctx, AV_LOG_ERROR,
1071  "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
1072  sbr_turnoff(sbr);
1073  return get_bits_count(gb) - cnt;
1074  }
1075  if (get_bits1(gb)) { // bs_extended_data
1076  int num_bits_left = get_bits(gb, 4); // bs_extension_size
1077  if (num_bits_left == 15)
1078  num_bits_left += get_bits(gb, 8); // bs_esc_count
1079 
1080  num_bits_left <<= 3;
1081  while (num_bits_left > 7) {
1082  num_bits_left -= 2;
1083  read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
1084  }
1085  if (num_bits_left < 0) {
1086  av_log(ac->avctx, AV_LOG_ERROR, "SBR Extension over read.\n");
1087  }
1088  if (num_bits_left > 0)
1089  skip_bits(gb, num_bits_left);
1090  }
1091 
1092  return get_bits_count(gb) - cnt;
1093 }
1094 
1096 {
1097  int err;
1098  err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
1099  if (err >= 0)
1100  err = sbr_make_f_derived(ac, sbr);
1101  if (err < 0) {
1102  av_log(ac->avctx, AV_LOG_ERROR,
1103  "SBR reset failed. Switching SBR to pure upsampling mode.\n");
1104  sbr_turnoff(sbr);
1105  }
1106 }
1107 
1108 /**
1109  * Decode Spectral Band Replication extension data; reference: table 4.55.
1110  *
1111  * @param crc flag indicating the presence of CRC checksum
1112  * @param cnt length of TYPE_FIL syntactic element in bytes
1113  *
1114  * @return Returns number of bytes consumed from the TYPE_FIL element.
1115  */
1117  GetBitContext *gb_host, int crc, int cnt, int id_aac)
1118 {
1119  unsigned int num_sbr_bits = 0, num_align_bits;
1120  unsigned bytes_read;
1121  GetBitContext gbc = *gb_host, *gb = &gbc;
1122  skip_bits_long(gb_host, cnt*8 - 4);
1123 
1124  sbr->reset = 0;
1125 
1126  if (!sbr->sample_rate)
1127  sbr->sample_rate = 2 * ac->oc[1].m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
1128  if (!ac->oc[1].m4ac.ext_sample_rate)
1129  ac->oc[1].m4ac.ext_sample_rate = 2 * ac->oc[1].m4ac.sample_rate;
1130 
1131  if (crc) {
1132  skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
1133  num_sbr_bits += 10;
1134  }
1135 
1136  //Save some state from the previous frame.
1137  sbr->kx[0] = sbr->kx[1];
1138  sbr->m[0] = sbr->m[1];
1139  sbr->kx_and_m_pushed = 1;
1140 
1141  num_sbr_bits++;
1142  if (get_bits1(gb)) // bs_header_flag
1143  num_sbr_bits += read_sbr_header(sbr, gb);
1144 
1145  if (sbr->reset)
1146  sbr_reset(ac, sbr);
1147 
1148  if (sbr->start)
1149  num_sbr_bits += read_sbr_data(ac, sbr, gb, id_aac);
1150 
1151  num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
1152  bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
1153 
1154  if (bytes_read > cnt) {
1155  av_log(ac->avctx, AV_LOG_ERROR,
1156  "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
1157  sbr_turnoff(sbr);
1158  }
1159  return cnt;
1160 }
1161 
1162 /**
1163  * Analysis QMF Bank (14496-3 sp04 p206)
1164  *
1165  * @param x pointer to the beginning of the first sample window
1166  * @param W array of complex-valued samples split into subbands
1167  */
1168 #ifndef sbr_qmf_analysis
1169 #if USE_FIXED
1170 static void sbr_qmf_analysis(AVFixedDSPContext *dsp, FFTContext *mdct,
1171 #else
1173 #endif /* USE_FIXED */
1174  SBRDSPContext *sbrdsp, const INTFLOAT *in, INTFLOAT *x,
1175  INTFLOAT z[320], INTFLOAT W[2][32][32][2], int buf_idx)
1176 {
1177  int i;
1178 #if USE_FIXED
1179  int j;
1180 #endif
1181  memcpy(x , x+1024, (320-32)*sizeof(x[0]));
1182  memcpy(x+288, in, 1024*sizeof(x[0]));
1183  for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
1184  // are not supported
1185  dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
1186  sbrdsp->sum64x5(z);
1187  sbrdsp->qmf_pre_shuffle(z);
1188 #if USE_FIXED
1189  for (j = 64; j < 128; j++) {
1190  if (z[j] > 1<<24) {
1192  "sbr_qmf_analysis: value %09d too large, setting to %09d\n",
1193  z[j], 1<<24);
1194  z[j] = 1<<24;
1195  } else if (z[j] < -(1<<24)) {
1197  "sbr_qmf_analysis: value %09d too small, setting to %09d\n",
1198  z[j], -(1<<24));
1199  z[j] = -(1<<24);
1200  }
1201  }
1202 #endif
1203  mdct->imdct_half(mdct, z, z+64);
1204  sbrdsp->qmf_post_shuffle(W[buf_idx][i], z);
1205  x += 32;
1206  }
1207 }
1208 #endif
1209 
1210 /**
1211  * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
1212  * (14496-3 sp04 p206)
1213  */
1214 #ifndef sbr_qmf_synthesis
1215 static void sbr_qmf_synthesis(FFTContext *mdct,
1216 #if USE_FIXED
1217  SBRDSPContext *sbrdsp, AVFixedDSPContext *dsp,
1218 #else
1219  SBRDSPContext *sbrdsp, AVFloatDSPContext *dsp,
1220 #endif /* USE_FIXED */
1221  INTFLOAT *out, INTFLOAT X[2][38][64],
1222  INTFLOAT mdct_buf[2][64],
1223  INTFLOAT *v0, int *v_off, const unsigned int div)
1224 {
1225  int i, n;
1226  const INTFLOAT *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
1227  const int step = 128 >> div;
1228  INTFLOAT *v;
1229  for (i = 0; i < 32; i++) {
1230  if (*v_off < step) {
1231  int saved_samples = (1280 - 128) >> div;
1232  memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(INTFLOAT));
1233  *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - step;
1234  } else {
1235  *v_off -= step;
1236  }
1237  v = v0 + *v_off;
1238  if (div) {
1239  for (n = 0; n < 32; n++) {
1240  X[0][i][ n] = -X[0][i][n];
1241  X[0][i][32+n] = X[1][i][31-n];
1242  }
1243  mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
1244  sbrdsp->qmf_deint_neg(v, mdct_buf[0]);
1245  } else {
1246  sbrdsp->neg_odd_64(X[1][i]);
1247  mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
1248  mdct->imdct_half(mdct, mdct_buf[1], X[1][i]);
1249  sbrdsp->qmf_deint_bfly(v, mdct_buf[1], mdct_buf[0]);
1250  }
1251  dsp->vector_fmul (out, v , sbr_qmf_window , 64 >> div);
1252  dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div);
1253  dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div);
1254  dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div);
1255  dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div);
1256  dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div);
1257  dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div);
1258  dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div);
1259  dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div);
1260  dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div);
1261  out += 64 >> div;
1262  }
1263 }
1264 #endif
1265 
1266 /// Generate the subband filtered lowband
1268  INTFLOAT X_low[32][40][2], const INTFLOAT W[2][32][32][2],
1269  int buf_idx)
1270 {
1271  int i, k;
1272  const int t_HFGen = 8;
1273  const int i_f = 32;
1274  memset(X_low, 0, 32*sizeof(*X_low));
1275  for (k = 0; k < sbr->kx[1]; k++) {
1276  for (i = t_HFGen; i < i_f + t_HFGen; i++) {
1277  X_low[k][i][0] = W[buf_idx][i - t_HFGen][k][0];
1278  X_low[k][i][1] = W[buf_idx][i - t_HFGen][k][1];
1279  }
1280  }
1281  buf_idx = 1-buf_idx;
1282  for (k = 0; k < sbr->kx[0]; k++) {
1283  for (i = 0; i < t_HFGen; i++) {
1284  X_low[k][i][0] = W[buf_idx][i + i_f - t_HFGen][k][0];
1285  X_low[k][i][1] = W[buf_idx][i + i_f - t_HFGen][k][1];
1286  }
1287  }
1288  return 0;
1289 }
1290 
1291 /// High Frequency Generator (14496-3 sp04 p215)
1293  INTFLOAT X_high[64][40][2], const INTFLOAT X_low[32][40][2],
1294  const INTFLOAT (*alpha0)[2], const INTFLOAT (*alpha1)[2],
1295  const INTFLOAT bw_array[5], const uint8_t *t_env,
1296  int bs_num_env)
1297 {
1298  int j, x;
1299  int g = 0;
1300  int k = sbr->kx[1];
1301  for (j = 0; j < sbr->num_patches; j++) {
1302  for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
1303  const int p = sbr->patch_start_subband[j] + x;
1304  while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
1305  g++;
1306  g--;
1307 
1308  if (g < 0) {
1309  av_log(ac->avctx, AV_LOG_ERROR,
1310  "ERROR : no subband found for frequency %d\n", k);
1311  return -1;
1312  }
1313 
1314  sbr->dsp.hf_gen(X_high[k] + ENVELOPE_ADJUSTMENT_OFFSET,
1315  X_low[p] + ENVELOPE_ADJUSTMENT_OFFSET,
1316  alpha0[p], alpha1[p], bw_array[g],
1317  2 * t_env[0], 2 * t_env[bs_num_env]);
1318  }
1319  }
1320  if (k < sbr->m[1] + sbr->kx[1])
1321  memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
1322 
1323  return 0;
1324 }
1325 
1326 /// Generate the subband filtered lowband
1327 static int sbr_x_gen(SpectralBandReplication *sbr, INTFLOAT X[2][38][64],
1328  const INTFLOAT Y0[38][64][2], const INTFLOAT Y1[38][64][2],
1329  const INTFLOAT X_low[32][40][2], int ch)
1330 {
1331  int k, i;
1332  const int i_f = 32;
1333  const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
1334  memset(X, 0, 2*sizeof(*X));
1335  for (k = 0; k < sbr->kx[0]; k++) {
1336  for (i = 0; i < i_Temp; i++) {
1337  X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1338  X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1339  }
1340  }
1341  for (; k < sbr->kx[0] + sbr->m[0]; k++) {
1342  for (i = 0; i < i_Temp; i++) {
1343  X[0][i][k] = Y0[i + i_f][k][0];
1344  X[1][i][k] = Y0[i + i_f][k][1];
1345  }
1346  }
1347 
1348  for (k = 0; k < sbr->kx[1]; k++) {
1349  for (i = i_Temp; i < 38; i++) {
1350  X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1351  X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1352  }
1353  }
1354  for (; k < sbr->kx[1] + sbr->m[1]; k++) {
1355  for (i = i_Temp; i < i_f; i++) {
1356  X[0][i][k] = Y1[i][k][0];
1357  X[1][i][k] = Y1[i][k][1];
1358  }
1359  }
1360  return 0;
1361 }
1362 
1363 /** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
1364  * (14496-3 sp04 p217)
1365  */
1367  SBRData *ch_data, int e_a[2])
1368 {
1369  int e, i, m;
1370 
1371  memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
1372  for (e = 0; e < ch_data->bs_num_env; e++) {
1373  const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
1374  uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1375  int k;
1376 
1377  if (sbr->kx[1] != table[0]) {
1378  av_log(ac->avctx, AV_LOG_ERROR, "kx != f_table{high,low}[0]. "
1379  "Derived frequency tables were not regenerated.\n");
1380  sbr_turnoff(sbr);
1381  return AVERROR_BUG;
1382  }
1383  for (i = 0; i < ilim; i++)
1384  for (m = table[i]; m < table[i + 1]; m++)
1385  sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
1386 
1387  // ch_data->bs_num_noise > 1 => 2 noise floors
1388  k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
1389  for (i = 0; i < sbr->n_q; i++)
1390  for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
1391  sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
1392 
1393  for (i = 0; i < sbr->n[1]; i++) {
1394  if (ch_data->bs_add_harmonic_flag) {
1395  const unsigned int m_midpoint =
1396  (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
1397 
1398  ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
1399  (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
1400  }
1401  }
1402 
1403  for (i = 0; i < ilim; i++) {
1404  int additional_sinusoid_present = 0;
1405  for (m = table[i]; m < table[i + 1]; m++) {
1406  if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
1407  additional_sinusoid_present = 1;
1408  break;
1409  }
1410  }
1411  memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
1412  (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
1413  }
1414  }
1415 
1416  memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0]));
1417  return 0;
1418 }
1419 
1420 /// Estimation of current envelope (14496-3 sp04 p218)
1421 static void sbr_env_estimate(AAC_FLOAT (*e_curr)[48], INTFLOAT X_high[64][40][2],
1422  SpectralBandReplication *sbr, SBRData *ch_data)
1423 {
1424  int e, m;
1425  int kx1 = sbr->kx[1];
1426 
1427  if (sbr->bs_interpol_freq) {
1428  for (e = 0; e < ch_data->bs_num_env; e++) {
1429 #if USE_FIXED
1430  const SoftFloat recip_env_size = av_int2sf(0x20000000 / (ch_data->t_env[e + 1] - ch_data->t_env[e]), 30);
1431 #else
1432  const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1433 #endif /* USE_FIXED */
1434  int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1435  int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1436 
1437  for (m = 0; m < sbr->m[1]; m++) {
1438  AAC_FLOAT sum = sbr->dsp.sum_square(X_high[m+kx1] + ilb, iub - ilb);
1439 #if USE_FIXED
1440  e_curr[e][m] = av_mul_sf(sum, recip_env_size);
1441 #else
1442  e_curr[e][m] = sum * recip_env_size;
1443 #endif /* USE_FIXED */
1444  }
1445  }
1446  } else {
1447  int k, p;
1448 
1449  for (e = 0; e < ch_data->bs_num_env; e++) {
1450  const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1451  int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1452  int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1453  const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1454 
1455  for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
1456 #if USE_FIXED
1457  SoftFloat sum = FLOAT_0;
1458  const SoftFloat den = av_int2sf(0x20000000 / (env_size * (table[p + 1] - table[p])), 29);
1459  for (k = table[p]; k < table[p + 1]; k++) {
1460  sum = av_add_sf(sum, sbr->dsp.sum_square(X_high[k] + ilb, iub - ilb));
1461  }
1462  sum = av_mul_sf(sum, den);
1463 #else
1464  float sum = 0.0f;
1465  const int den = env_size * (table[p + 1] - table[p]);
1466 
1467  for (k = table[p]; k < table[p + 1]; k++) {
1468  sum += sbr->dsp.sum_square(X_high[k] + ilb, iub - ilb);
1469  }
1470  sum /= den;
1471 #endif /* USE_FIXED */
1472  for (k = table[p]; k < table[p + 1]; k++) {
1473  e_curr[e][k - kx1] = sum;
1474  }
1475  }
1476  }
1477  }
1478 }
1479 
1481  INTFLOAT* L, INTFLOAT* R)
1482 {
1483  int downsampled = ac->oc[1].m4ac.ext_sample_rate < sbr->sample_rate;
1484  int ch;
1485  int nch = (id_aac == TYPE_CPE) ? 2 : 1;
1486  int err;
1487 
1488  if (id_aac != sbr->id_aac) {
1489  av_log(ac->avctx, id_aac == TYPE_LFE ? AV_LOG_VERBOSE : AV_LOG_WARNING,
1490  "element type mismatch %d != %d\n", id_aac, sbr->id_aac);
1491  sbr_turnoff(sbr);
1492  }
1493 
1494  if (sbr->start && !sbr->ready_for_dequant) {
1495  av_log(ac->avctx, AV_LOG_ERROR,
1496  "No quantized data read for sbr_dequant.\n");
1497  sbr_turnoff(sbr);
1498  }
1499 
1500  if (!sbr->kx_and_m_pushed) {
1501  sbr->kx[0] = sbr->kx[1];
1502  sbr->m[0] = sbr->m[1];
1503  } else {
1504  sbr->kx_and_m_pushed = 0;
1505  }
1506 
1507  if (sbr->start) {
1508  sbr_dequant(sbr, id_aac);
1509  sbr->ready_for_dequant = 0;
1510  }
1511  for (ch = 0; ch < nch; ch++) {
1512  /* decode channel */
1513  sbr_qmf_analysis(ac->fdsp, &sbr->mdct_ana, &sbr->dsp, ch ? R : L, sbr->data[ch].analysis_filterbank_samples,
1514  (INTFLOAT*)sbr->qmf_filter_scratch,
1515  sbr->data[ch].W, sbr->data[ch].Ypos);
1516  sbr->c.sbr_lf_gen(ac, sbr, sbr->X_low,
1517  (const INTFLOAT (*)[32][32][2]) sbr->data[ch].W,
1518  sbr->data[ch].Ypos);
1519  sbr->data[ch].Ypos ^= 1;
1520  if (sbr->start) {
1521  sbr->c.sbr_hf_inverse_filter(&sbr->dsp, sbr->alpha0, sbr->alpha1,
1522  (const INTFLOAT (*)[40][2]) sbr->X_low, sbr->k[0]);
1523  sbr_chirp(sbr, &sbr->data[ch]);
1524  av_assert0(sbr->data[ch].bs_num_env > 0);
1525  sbr_hf_gen(ac, sbr, sbr->X_high,
1526  (const INTFLOAT (*)[40][2]) sbr->X_low,
1527  (const INTFLOAT (*)[2]) sbr->alpha0,
1528  (const INTFLOAT (*)[2]) sbr->alpha1,
1529  sbr->data[ch].bw_array, sbr->data[ch].t_env,
1530  sbr->data[ch].bs_num_env);
1531 
1532  // hf_adj
1533  err = sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1534  if (!err) {
1535  sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
1536  sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1537  sbr->c.sbr_hf_assemble(sbr->data[ch].Y[sbr->data[ch].Ypos],
1538  (const INTFLOAT (*)[40][2]) sbr->X_high,
1539  sbr, &sbr->data[ch],
1540  sbr->data[ch].e_a);
1541  }
1542  }
1543 
1544  /* synthesis */
1545  sbr->c.sbr_x_gen(sbr, sbr->X[ch],
1546  (const INTFLOAT (*)[64][2]) sbr->data[ch].Y[1-sbr->data[ch].Ypos],
1547  (const INTFLOAT (*)[64][2]) sbr->data[ch].Y[ sbr->data[ch].Ypos],
1548  (const INTFLOAT (*)[40][2]) sbr->X_low, ch);
1549  }
1550 
1551  if (ac->oc[1].m4ac.ps == 1) {
1552  if (sbr->ps.start) {
1553  AAC_RENAME(ff_ps_apply)(ac->avctx, &sbr->ps, sbr->X[0], sbr->X[1], sbr->kx[1] + sbr->m[1]);
1554  } else {
1555  memcpy(sbr->X[1], sbr->X[0], sizeof(sbr->X[0]));
1556  }
1557  nch = 2;
1558  }
1559 
1560  sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, ac->fdsp,
1561  L, sbr->X[0], sbr->qmf_filter_scratch,
1562  sbr->data[0].synthesis_filterbank_samples,
1563  &sbr->data[0].synthesis_filterbank_samples_offset,
1564  downsampled);
1565  if (nch == 2)
1566  sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, ac->fdsp,
1567  R, sbr->X[1], sbr->qmf_filter_scratch,
1568  sbr->data[1].synthesis_filterbank_samples,
1569  &sbr->data[1].synthesis_filterbank_samples_offset,
1570  downsampled);
1571 }
1572 
1574 {
1575  c->sbr_lf_gen = sbr_lf_gen;
1577  c->sbr_x_gen = sbr_x_gen;
1579 
1580 #if !USE_FIXED
1581  if(ARCH_MIPS)
1583 #endif
1584 }
uint8_t s_indexmapped[8][48]
Definition: sbr.h:97
unsigned bs_add_harmonic_flag
Definition: sbr.h:68
void AAC_RENAME() ff_sbrdsp_init(SBRDSPContext *s)
static int qsort_comparison_function_int16(const void *a, const void *b)
#define NULL
Definition: coverity.c:32
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb, int id_aac)
static int array_min_int16(const int16_t *array, int nel)
static void sbr_hf_assemble(float Y1[38][64][2], const float X_high[64][40][2], SpectralBandReplication *sbr, SBRData *ch_data, const int e_a[2])
Assembling HF Signals (14496-3 sp04 p220)
Definition: aacsbr.c:276
static const int8_t vlc_sbr_lav[10]
Definition: aacsbr.h:69
int(* sbr_lf_gen)(AACContext *ac, SpectralBandReplication *sbr, INTFLOAT X_low[32][40][2], const INTFLOAT W[2][32][32][2], int buf_idx)
Definition: sbr.h:121
unsigned bs_smoothing_mode
Definition: sbr.h:154
AVCodecContext * avctx
Definition: aac.h:295
static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:379
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
Definition: vf_addroi.c:26
static void sbr_qmf_synthesis(FFTContext *mdct, SBRDSPContext *sbrdsp, AVFloatDSPContext *dsp, INTFLOAT *out, INTFLOAT X[2][38][64], INTFLOAT mdct_buf[2][64], INTFLOAT *v0, int *v_off, const unsigned int div)
Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank (14496-3 sp04 p206) ...
else temp
Definition: vf_mcdeint.c:256
static void skip_bits_long(GetBitContext *s, int n)
Skips the specified number of bits.
Definition: get_bits.h:291
const char * g
Definition: vf_curves.c:115
#define avpriv_request_sample(...)
Definition: aac.h:56
static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr, INTFLOAT X_high[64][40][2], const INTFLOAT X_low[32][40][2], const INTFLOAT(*alpha0)[2], const INTFLOAT(*alpha1)[2], const INTFLOAT bw_array[5], const uint8_t *t_env, int bs_num_env)
High Frequency Generator (14496-3 sp04 p215)
Definition: aac.h:57
int e_a[2]
l_APrev and l_A
Definition: sbr.h:87
int AAC_RENAME() ff_ps_read_data(AVCodecContext *avctx, GetBitContext *gb_host, PSContext *ps, int bits_left)
Definition: aacps.c:158
static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb, SBRData *ch_data)
Read inverse filtering data.
const char * b
Definition: vf_curves.c:116
AAC_SIGNE kx[2]
kx&#39;, and kx respectively, kx is the first QMF subband where SBR is used.
Definition: sbr.h:160
uint8_t noise_facs_q[3][5]
Noise scalefactors.
Definition: sbr.h:102
#define FF_PROFILE_AAC_HE_V2
Definition: avcodec.h:1872
uint8_t bs_xover_band
Definition: sbr.h:45
int profile
profile
Definition: avcodec.h:1863
SpectrumParameters spectrum_params
Definition: sbr.h:145
Definition: aac.h:58
#define USE_FIXED
Definition: aac_defines.h:25
#define AAC_RENAME_32(x)
Definition: aac_defines.h:85
Definition: aacsbr.h:62
int AAC_RENAME() ff_ps_apply(AVCodecContext *avctx, PSContext *ps, INTFLOAT L[2][38][64], INTFLOAT R[2][38][64], int top)
Definition: aacps.c:981
float INTFLOAT
Definition: aac_defines.h:86
static const SoftFloat FLOAT_0
0.0
Definition: softfloat.h:39
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
Definition: vf_addroi.c:26
static const int8_t sbr_offset[6][16]
Definition: aacsbrdata.h:261
AAC_SIGNE num_patches
Definition: sbr.h:184
uint8_t
#define av_cold
Definition: attributes.h:88
AAC_FLOAT noise_facs[3][5]
Definition: sbr.h:103
float delta
AAC_SIGNE n_lim
Number of limiter bands.
Definition: sbr.h:173
#define ENVELOPE_ADJUSTMENT_OFFSET
Definition: aacsbr.h:36
static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
#define f(width, name)
Definition: cbs_vp9.c:255
Definition: aac.h:59
uint16_t f_tablehigh[49]
Frequency borders for high resolution SBR.
Definition: sbr.h:179
void(* vector_fmul)(float *dst, const float *src0, const float *src1, int len)
Calculate the entry wise product of two vectors of floats and store the result in a vector of floats...
Definition: float_dsp.h:38
void ff_aacsbr_func_ptr_init_mips(AACSBRContext *c)
Definition: aacsbr_mips.c:611
void(* hf_gen)(INTFLOAT(*X_high)[2], const INTFLOAT(*X_low)[2], const INTFLOAT alpha0[2], const INTFLOAT alpha1[2], INTFLOAT bw, int start, int end)
Definition: sbrdsp.h:37
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:219
static INTFLOAT sbr_qmf_window_us[640]
AAC_SIGNE bs_num_noise
Definition: sbr.h:71
#define AV_LOG_VERBOSE
Detailed information.
Definition: log.h:192
#define lrintf(x)
Definition: libm_mips.h:70
av_cold void AAC_RENAME() ff_aac_sbr_ctx_close(SpectralBandReplication *sbr)
Close one SBR context.
SBRData data[2]
Definition: sbr.h:166
static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
Derived Frequency Band Tables (14496-3 sp04 p197)
uint8_t bs_df_noise[2]
Definition: sbr.h:73
static int fixed_log(int x)
Definition: aacsbr_fixed.c:87
static int read_sbr_envelope(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb, SBRData *ch_data, int ch)
#define av_log(a,...)
uint8_t patch_num_subbands[6]
Definition: sbr.h:185
static const uint16_t table[]
Definition: prosumer.c:206
uint16_t f_tablenoise[6]
Frequency borders for noise floors.
Definition: sbr.h:181
#define SBR_INIT_VLC_STATIC(num, size)
Definition: aacsbr.h:72
#define U(x)
Definition: vp56_arith.h:37
#define src
Definition: vp8dsp.c:254
static void copy_sbr_grid(SBRData *dst, const SBRData *src)
MPEG4AudioConfig m4ac
Definition: aac.h:124
uint8_t t_q[3]
Noise time borders.
Definition: sbr.h:109
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:269
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
uint16_t f_tablelow[25]
Frequency borders for low resolution SBR.
Definition: sbr.h:177
#define R
Definition: huffyuvdsp.h:34
static void sbr_hf_inverse_filter(SBRDSPContext *dsp, float(*alpha0)[2], float(*alpha1)[2], const float X_low[32][40][2], int k0)
High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering (14496-3 sp04 p214) Warning: Thi...
Definition: aacsbr.c:140
Spectral Band Replication header - spectrum parameters that invoke a reset if they differ from the pr...
Definition: sbr.h:42
AAC_SIGNE k[5]
k0, k1, k2
Definition: sbr.h:157
AAC_SIGNE m[2]
M&#39; and M respectively, M is the number of QMF subbands that use SBR.
Definition: sbr.h:162
static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
Dequantization and stereo decoding (14496-3 sp04 p203)
Definition: aacsbr.c:73
Definition: aacsbr.h:60
static int sbr_mapping(AACContext *ac, SpectralBandReplication *sbr, SBRData *ch_data, int e_a[2])
High Frequency Adjustment (14496-3 sp04 p217) and Mapping (14496-3 sp04 p217)
uint8_t bits
Definition: vp3data.h:202
#define ff_mdct_init
Definition: fft.h:169
#define FFMAX(a, b)
Definition: common.h:94
av_cold void AAC_RENAME() ff_aac_sbr_ctx_init(AACContext *ac, SpectralBandReplication *sbr, int id_aac)
Initialize one SBR context.
unsigned bs_interpol_freq
Definition: sbr.h:153
uint8_t env_facs_q[6][48]
Envelope scalefactors.
Definition: sbr.h:99
#define AAC_RENAME(x)
Definition: aac_defines.h:84
AAC_FLOAT(* sum_square)(INTFLOAT(*x)[2], int n)
Definition: sbrdsp.h:30
unsigned f_indexnoise
Definition: sbr.h:110
uint8_t t_env_num_env_old
Envelope time border of the last envelope of the previous frame.
Definition: sbr.h:107
static int read_sbr_channel_pair_element(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb)
Definition: fft.h:88
unsigned bs_amp_res
Definition: sbr.h:76
#define FFMIN(a, b)
Definition: common.h:96
uint8_t bs_freq_scale
Definition: sbr.h:51
static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
static const ElemCat * elements[ELEMENT_COUNT]
Definition: signature.h:566
unsigned bs_limiter_gains
Definition: sbr.h:152
static const int CONST_RECIP_LN2
Definition: aacsbr_fixed.c:78
static void sbr_qmf_analysis(AVFloatDSPContext *dsp, FFTContext *mdct, SBRDSPContext *sbrdsp, const INTFLOAT *in, INTFLOAT *x, INTFLOAT z[320], INTFLOAT W[2][32][32][2], int buf_idx)
Analysis QMF Bank (14496-3 sp04 p206)
void(* sbr_hf_inverse_filter)(SBRDSPContext *dsp, INTFLOAT(*alpha0)[2], INTFLOAT(*alpha1)[2], const INTFLOAT X_low[32][40][2], int k0)
Definition: sbr.h:131
static unsigned int show_bits(GetBitContext *s, int n)
Show 1-25 bits.
Definition: get_bits.h:446
AAC_FLOAT e_origmapped[7][48]
Dequantized envelope scalefactors, remapped.
Definition: sbr.h:198
float AAC_FLOAT
Definition: aac_defines.h:90
uint8_t s_mapped[7][48]
Sinusoidal presence, remapped.
Definition: sbr.h:202
static void aacsbr_func_ptr_init(AACSBRContext *c)
static av_always_inline int get_vlc2(GetBitContext *s, VLC_TYPE(*table)[2], int bits, int max_depth)
Parse a vlc code.
Definition: get_bits.h:797
static int in_table_int16(const int16_t *table, int last_el, int16_t needle)
Definition: aacsbr.h:61
static void sbr_env_estimate(AAC_FLOAT(*e_curr)[48], INTFLOAT X_high[64][40][2], SpectralBandReplication *sbr, SBRData *ch_data)
Estimation of current envelope (14496-3 sp04 p218)
uint8_t bs_freq_res[7]
Definition: sbr.h:70
av_cold void AAC_RENAME() ff_ps_init(void)
Definition: aacps.c:1011
static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr, INTFLOAT X_low[32][40][2], const INTFLOAT W[2][32][32][2], int buf_idx)
Generate the subband filtered lowband.
#define L(x)
Definition: vp56_arith.h:36
static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr, SBRData *ch_data, const int e_a[2])
Calculation of levels of additional HF signal components (14496-3 sp04 p219) and Calculation of gain ...
Definition: aacsbr.c:219
int(* sbr_x_gen)(SpectralBandReplication *sbr, INTFLOAT X[2][38][64], const INTFLOAT Y0[38][64][2], const INTFLOAT Y1[38][64][2], const INTFLOAT X_low[32][40][2], int ch)
Definition: sbr.h:128
AAC_SIGNE bs_num_env
Definition: sbr.h:69
static void sbr_turnoff(SpectralBandReplication *sbr)
Places SBR in pure upsampling mode.
#define SBR_SYNTHESIS_BUF_SIZE
Definition: sbr.h:57
AAC_FLOAT q_mapped[7][48]
Dequantized noise scalefactors, remapped.
Definition: sbr.h:200
static const int8_t ceil_log2[]
ceil(log2(index+1))
typedef void(RENAME(mix_any_func_type))
void AAC_RENAME() ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int id_aac, INTFLOAT *L, INTFLOAT *R)
Apply one SBR element to one AAC element.
int AAC_RENAME() ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb_host, int crc, int cnt, int id_aac)
Decode Spectral Band Replication extension data; reference: table 4.55.
main external API structure.
Definition: avcodec.h:526
long long int64_t
Definition: coverity.c:34
static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb, SBRData *ch_data)
Read how the envelope and noise floor data is delta coded.
#define AVERROR_BUG
Internal bug, also see AVERROR_BUG2.
Definition: error.h:50
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:498
static const int CONST_076923
Definition: aacsbr_fixed.c:79
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
static void skip_bits(GetBitContext *s, int n)
Definition: get_bits.h:467
static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec, int elements)
static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb, int bs_extension_id, int *num_bits_left)
static int read_sbr_single_channel_element(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb)
static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr, SpectrumParameters *spectrum)
Master Frequency Band Table (14496-3 sp04 p194)
static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
Chirp Factors (14496-3 sp04 p214)
Definition: aacsbr.c:195
av_cold void AAC_RENAME() ff_ps_ctx_init(PSContext *ps)
Definition: aacps.c:1043
AAC_FLOAT env_facs[6][48]
Definition: sbr.h:100
uint8_t bs_noise_bands
Definition: sbr.h:53
#define ARCH_MIPS
Definition: config.h:26
main AAC context
Definition: aac.h:293
AAC_SIGNE n_master
The number of frequency bands in f_master.
Definition: sbr.h:165
Definition: aacsbr.h:59
static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
Limiter Frequency Band Table (14496-3 sp04 p198)
uint8_t bs_stop_freq
Definition: sbr.h:44
void(* imdct_half)(struct FFTContext *s, FFTSample *output, const FFTSample *input)
Definition: fft.h:108
uint16_t f_master[49]
The master QMF frequency grouping.
Definition: sbr.h:175
uint8_t bs_invf_mode[2][5]
Definition: sbr.h:74
static av_const SoftFloat av_add_sf(SoftFloat a, SoftFloat b)
Definition: softfloat.h:162
static int sbr_x_gen(SpectralBandReplication *sbr, INTFLOAT X[2][38][64], const INTFLOAT Y0[38][64][2], const INTFLOAT Y1[38][64][2], const INTFLOAT X_low[32][40][2], int ch)
Generate the subband filtered lowband.
#define v0
Definition: regdef.h:26
OutputConfiguration oc[2]
Definition: aac.h:356
int
if(ret< 0)
Definition: vf_mcdeint.c:279
static av_cold void aacsbr_tableinit(void)
#define log2f(x)
Definition: libm.h:409
#define ff_mdct_end
Definition: fft.h:170
static av_const SoftFloat av_mul_sf(SoftFloat a, SoftFloat b)
Definition: softfloat.h:102
static double c[64]
uint8_t patch_start_subband[6]
Definition: sbr.h:186
uint8_t t_env[8]
Envelope time borders.
Definition: sbr.h:105
void(* vector_fmul_add)(float *dst, const float *src0, const float *src1, const float *src2, int len)
Calculate the entry wise product of two vectors of floats, add a third vector of floats and store the...
Definition: float_dsp.h:137
aacsbr functions pointers
Definition: sbr.h:120
static INTFLOAT sbr_qmf_window_ds[320]
< window coefficients for analysis/synthesis QMF banks
uint16_t f_tablelim[30]
Frequency borders for the limiter.
Definition: sbr.h:183
Spectral Band Replication per channel data.
Definition: sbr.h:62
static void make_bands(int16_t *bands, int start, int stop, int num_bands)
Definition: aacsbr.c:54
#define SBR_VLC_ROW(name)
Definition: aacsbr.h:78
unsigned bs_limiter_bands
Definition: sbr.h:151
uint8_t bs_alter_scale
Definition: sbr.h:52
unsigned bs_frame_class
Definition: sbr.h:67
static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
uint8_t bs_df_env[5]
Definition: sbr.h:72
VLC_TYPE(* table)[2]
code, bits
Definition: vlc.h:28
void(* sbr_hf_assemble)(INTFLOAT Y1[38][64][2], const INTFLOAT X_high[64][40][2], SpectralBandReplication *sbr, SBRData *ch_data, const int e_a[2])
Definition: sbr.h:124
SBRDSPContext dsp
Definition: sbr.h:213
FILE * out
Definition: movenc.c:54
static av_const SoftFloat av_int2sf(int v, int frac_bits)
Converts a mantisse and exponent to a SoftFloat.
Definition: softfloat.h:185
#define Q23(x)
Definition: aac_defines.h:94
#define av_always_inline
Definition: attributes.h:45
static int array[MAX_W *MAX_W]
Definition: jpeg2000dwt.c:106
#define VLC_TYPE
Definition: vlc.h:24
int ps
-1 implicit, 1 presence
Definition: mpeg4audio.h:44
static VLC vlc_sbr[10]
Definition: aacsbr.c:51
AAC_SIGNE n_q
Number of noise floor bands.
Definition: sbr.h:171
unsigned bs_coupling
Definition: sbr.h:156
Spectral Band Replication.
Definition: sbr.h:139
static int read_sbr_noise(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb, SBRData *ch_data, int ch)
float min
av_cold void AAC_RENAME() ff_aac_sbr_init(void)
Initialize SBR.
uint8_t bs_add_harmonic[48]
Definition: sbr.h:75
#define AV_QSORT(p, num, type, cmp)
Quicksort This sort is fast, and fully inplace but not stable and it is possible to construct input t...
Definition: qsort.h:33
PSContext ps
Definition: sbr.h:167
uint8_t bs_start_freq
Definition: sbr.h:43
AAC_SIGNE n[2]
N_Low and N_High respectively, the number of frequency bands for low and high resolution.
Definition: sbr.h:169
static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb, SBRData *ch_data)
void(* vector_fmul_reverse)(float *dst, const float *src0, const float *src1, int len)
Calculate the entry wise product of two vectors of floats, and store the result in a vector of floats...
Definition: float_dsp.h:154
static uint8_t tmp[11]
Definition: aes_ctr.c:26